期刊文献+

膝骨性关节炎运动质量评估系统设计 被引量:2

The Design of Movement Quality Assessment System for Knee Osteoarthritis Patients
在线阅读 下载PDF
导出
摘要 为膝骨性关节炎患者提供一种运动康复训练的监护系统,患者可以通过监护系统了解自身运动规范程度并作适当的调整。设计了一种基于ZigBee无线通信技术的人体下肢运动质量评估系统,以评估膝骨性关节炎运动理疗法的动作规范性。该系统将装有微型加速度传感器的ZigBee模块穿戴在人体的下肢,获取运动时的三维加速度信号,将加速度信号经过Haar小波变换后,采用粒子群算法提取小波特征值,将提取的特征向量应用神经网络分类器对动作质量进行识别评估。通过对20名年龄在24~30周岁的健康男性直腿抬高训练的动作质量评估测试,系统对规范抬腿、抬腿过高、保持时间太短和非平行抬腿这4类训练取真率的均值和标准差分别为(89.1±2.0)%、(93.4±1.7)%、(89.5±2.3)%、(90.1±1.8)%。实验结果表明,本系统能有效地识别训练过程中的不规范动作,较好地实现了对直腿抬高训练的运动质量监测与评估,满足健康监护系统的应用需求。 This article proposed a rehabilitative training monitoring system for knee osteoarthritis patients, by which the patient can know their standardized degree of movement and make appropriate adjustments. We designed a quality assessment system of human lower extremity movement which was based on ZigBee wireless communication technology. The system can evaluate the action standardization of movement therapy. We mounted ZigBee module with miniature aceelerometer sensor on human lower extremity, by acquiring three- dimensional acceleration signal through the movement after Haar wavelet transformation, the system extracts wavelet eigenvalue using particle swarm optimization. These eigenvalues will be supplied in neural network classifier which can evaluate the quality of movement. By evaluating the exercise quality of lying straight leg raise training for 20 healthy men aged 24 - 30, the mean and standard deviations for these four training truth probability (specifieation, foot over, hold time is too short, non-parallel leg lifts ) were(89. 1± 2.0)%, (93.4 ± 1.7) %, (89.5 ±2.3 ) %, (90. 1 ± 1.8) %. Experimental results show that the system can effectively identify the non-standard action from training process and realize the monitoring and evaluation of lying straight leg raise training, which can meet the demands of health monitoring system.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2013年第5期513-519,共7页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金(61104041) 福建省科技计划重点项目(2012I01010428)
关键词 ZIGBEE技术 小波变换 粒子群算法 BP网络分类器 ZigBee wavelet transform particle swarm algorithm BP network classifier
作者简介 通信作者。E—mail:liyurong@fzu.edu.cn
  • 相关文献

参考文献21

  • 1梁平,李胜利.膝骨性关节炎的临床治疗进展[J].中国中医骨伤科杂志,2006,14(3):65-67. 被引量:15
  • 2Shull P, Lurie K, Shin M, et al. Haptic gait retraining for knee osteoarthritis treatment [C]// Proceedings of the IEEE Haptics Symposium 2010. Waltham: IEEE,2010 : 409 - 416.
  • 3Wrigley TV, Simic M, Hunt MA, et al. Real-time movement biofeedback for walking gait modification in knee osteoarthritis [ C ]// Proceedings of the Virtual Rehabilitation International Conference 2009. Haifa : IEEE,2009:132- 135.
  • 4沈钦荣.中医药治疗膝骨性关节炎实验研究进展[J].中国中医药科技,2004,11(6):389-390. 被引量:7
  • 5郝高庭,黄有荣.自然疗法治疗膝骨性关节炎近况[J].浙江中西医结合杂志,2010,20(5):326-327. 被引量:5
  • 6李声飞.基于WSN的穿戴式人体姿态与健康监护系统的研制[D].重庆:重庆大学,2010.
  • 7Taylor PE, Almeida JM, Kanade T, et al. Classifying human motion quality for knee osteoarthritis using accelerometers [ C ]// Proceedings of the 32nd Annual International Conference of the IEEE EMBS Buenos Aires. Argentina: IEEE,2010:339 - 343.
  • 8Taylor PE, Almeida DA, Hodgins JK, et al. Muhi-label classification for the analysis of human motion quality [ C ]// Proceedings of the 34th Annual International Conference of the IEEE EMBS. San Diego:IEEE,2012:2214-2218.
  • 9Nyan MN, Tay FE, Murugasu E. A wearable system for- preimpaet fall detection [ J]. Joumai of Biomechanics,2008, 41 (12) :3475 - 3481.
  • 10王昌喜,杨先军,徐强,马祖长,孙怡宁.基于三维加速度传感器的上肢动作识别系统[J].传感技术学报,2010,23(6):816-819. 被引量:27

二级参考文献121

共引文献67

同被引文献23

引证文献2

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部