摘要
为使多智能体系统更能适应复杂环境,将分层方法引入强化学习。把两层Q-Learning强化学习算法用于4个智能体协作推动圆盘物体,在未知环境中实现路径规划的计算机模拟中。仿真结果说明该方法的有效性和可行性。
In order to make the intelligent system better adapt the complex environment, brings the layering method into the reinforcement learning. The two layer Q-Learning method is used in the computer simulation of path planning for intelligent agents that cooperatively pushing a round dish in unknown environment. The result of simulation shows that this method is valid and feasible.
出处
《煤矿机电》
2013年第5期74-76,共3页
Colliery Mechanical & Electrical Technology
关键词
强化学习
Q学习
多智能体协作
路径规划
reinforcement learning
Q-Learning
intelligent multi-agent cooperation
path planning
作者简介
王帅(1979-),男,工程师。2007年毕业于东北电力大学控制理论与控制工程专业(硕士学位),现在中国煤炭科工集团沈阳研究院检测分院从事技术工作,发表论文多篇。