摘要
采用一阶Mindlin-Reissner板理论(FSDT),应用光滑有限元法分析板的屈曲问题.通过使用应变光滑技术,沿单元内的光滑格子边界积分形成单元的弯曲刚度矩阵和几何刚度矩阵.为了避免剪切锁定问题,采用混合插值法计算剪切应变.利用该光滑板单元分别分析板的单轴受压、双轴受压和平面内纯剪三种情况下的屈曲临界荷载.数值算例表明,光滑板单元不存在剪切锁定问题,和混合插值四边形板单元MITC4相比具有较高的精度,而且最重要的是其对网格畸变不敏感,摆脱了传统等参元对单元形状的限制.
A smoothed finite element method is applied to buckling analysis of plate, by using the first-order Reissner - Mindlin plate theory (FSDT). The bending stiffness matrix and geometrical stiffness matrix for el- ement used strain smoothing technicque is calculated by a boundary integral along the boundaries of the smoot- hing cells in element. The mixed interpolation method is employed to calculate shear strains in order to avoid shear locking. Buckling loads of plates subject to uniformly uniaxial, biaxial compression and pure shear in- plane are studied using the smoothed plate element respectively. Numerical examples show that the smoothed plate element is free of shear locking and achieves the high accuracy, compared with mixed interpolation plate element MITC4. And the most significant property is their insensitivity to mesh distortion aO that the restriction on the shape of classical isoparametric elements can be removed.
出处
《郑州大学学报(工学版)》
CAS
北大核心
2013年第5期38-42,共5页
Journal of Zhengzhou University(Engineering Science)
基金
住建部资助项目(2012-K4-21)
盐城工学院人才基金项目(XKR2011016)
作者简介
作者简介:贾程(1981-),男,江苏镇江人,盐城工学院讲师,博士,主要从事工程结构数值方法研究,E-mail:jctonm@163.com.