期刊文献+

Mindlin-Reissner板屈曲分析的光滑有限元法 被引量:2

A Smoothed Finite Element Method for Buckling Analysis of Reissner-Mindlin Plates
在线阅读 下载PDF
导出
摘要 采用一阶Mindlin-Reissner板理论(FSDT),应用光滑有限元法分析板的屈曲问题.通过使用应变光滑技术,沿单元内的光滑格子边界积分形成单元的弯曲刚度矩阵和几何刚度矩阵.为了避免剪切锁定问题,采用混合插值法计算剪切应变.利用该光滑板单元分别分析板的单轴受压、双轴受压和平面内纯剪三种情况下的屈曲临界荷载.数值算例表明,光滑板单元不存在剪切锁定问题,和混合插值四边形板单元MITC4相比具有较高的精度,而且最重要的是其对网格畸变不敏感,摆脱了传统等参元对单元形状的限制. A smoothed finite element method is applied to buckling analysis of plate, by using the first-order Reissner - Mindlin plate theory (FSDT). The bending stiffness matrix and geometrical stiffness matrix for el- ement used strain smoothing technicque is calculated by a boundary integral along the boundaries of the smoot- hing cells in element. The mixed interpolation method is employed to calculate shear strains in order to avoid shear locking. Buckling loads of plates subject to uniformly uniaxial, biaxial compression and pure shear in- plane are studied using the smoothed plate element respectively. Numerical examples show that the smoothed plate element is free of shear locking and achieves the high accuracy, compared with mixed interpolation plate element MITC4. And the most significant property is their insensitivity to mesh distortion aO that the restriction on the shape of classical isoparametric elements can be removed.
作者 贾程 陈国荣
出处 《郑州大学学报(工学版)》 CAS 北大核心 2013年第5期38-42,共5页 Journal of Zhengzhou University(Engineering Science)
基金 住建部资助项目(2012-K4-21) 盐城工学院人才基金项目(XKR2011016)
关键词 屈曲临界荷载 光滑有限元 应变光滑 MINDLIN Reissner板理论 buckling critical load smoothed finite element method strain smoothing Reissner-Mindlin platetheory
作者简介 作者简介:贾程(1981-),男,江苏镇江人,盐城工学院讲师,博士,主要从事工程结构数值方法研究,E-mail:jctonm@163.com.
  • 相关文献

参考文献9

  • 1BATHE K J, DVORKIN E N. A formulation of gener- al shell elements, the use of mixed interpolation of ten- sorial components [ ] ]. International Journal for Nu- merical Methods in Engineering, 1986,22 ( 3 ) : 697 - 722.
  • 2SIMO J C, RIFAI M S. A class of mixed assumed strain methods and the method of incompatib|e modes [J]. International Journal for Numerical Methods in Engineering, 1990,29 ( 8 ) : 1595 - 1638.
  • 3LIU Gui-rong, DAI Kai-yu. A smoothed finite elementfor mechanics problems [ J ]. Computational Mechan- ics, 2007, 39 (6) : 859 -877.
  • 4CUI Xiang-yang, LIU Gui-rong. Analysis of elastic - plastic problems using edge-based smoothed finite ele- ment method [ J ]. International Journal of Pressure Vessels and Piping,2009,86(10) :711 - 718.
  • 5CHEN Jiun-shyan,WU Cheng-tang,YOON S. A stabi- lized eonforming nodal integration for Galerkin mesh- free methods [ J ]. International Journal for Numerical Methods in Engineering, 2001,50 ( 2 ) :435 - 466.
  • 6王东东,李凌,张灿辉.稳定节点积分伽辽金无网格法的应力计算方法研究[J].固体力学学报,2009,30(6):586-591. 被引量:9
  • 7TIMOSHENKO S P, GERE J M. Theory of elastic sta- bility [ M ]. third ed. New York: McGraw- Hill, 1970.
  • 8BUI T Q, NGUYEN M N, ZHANG Chuan-zeng. Buckling analysis of Reissner-Mindlin plates subjected to in-plane edge loads using a shear-locking-free and meshfree method [ J ]. Engineering Analysis with Boundary Elements ,2011, 35 ( 9 ) : 1038 - 1053.
  • 9THAM L G, SZETO H Y. Buckling analysis of arbi- trary shaped plates by spline finite strip method [ J ]. Computers & Structures, 1990, 36 (4) :729 - 735.

二级参考文献11

  • 1Li S, Liu W K, Meshfree particle methods and their applications[J]. Applied Mechanics Reviews, 2002,55:1- 34.
  • 2Belytschko T, Lu Y Y, Gu L. Element-free Galerkin methods [J]. International Journal for Numerical Methods in Engineering, 1994, 37: 229-256.
  • 3Liu W K, Jun S, Zhang Y F. Reproducing kernel particle methods [J]. International Journal for Numerical Methods in Fluids, 1995, 20: 1081-1106.
  • 4Beissel S, Belytschko T. Nodal integration of the element-free Galerkin method[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139: 49- 74.
  • 5Chen J S, Wu C T, Yoon S, You Y. A stabilized conforming nodal integration for Galerkin meshfree methods [ J ]. International Journal for Numerical Methods in Engineering, 2001, 50:435- 466.
  • 6Wang D, Chen J S. Locking-free stabilized conforming nodal integration for meshfree Mindlin-Reissner plate formulation[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193: 1065-1083.
  • 7Wang D, Chen J S. A locking-free meshfree curved beam formulation with the stabilized conforming nodal integration[J]. Computational Mechanics, 2006, 39: 83-90.
  • 8Wang D, Chen J S. A Hermite reproducing kernel approximation for thin plate analysis with sub domain stabilized conforming integration [J]. International Journal for Numerical Methods in Engineering, 2008, 74: 368-390.
  • 9Wang D, Dong S B, Chen J S. Extended meshfree analysis of transverse and inplane loading of a laminated anisotropic plate of general planform geometry[J]. International Journal of Solids and Structures, 2006, 43: 144-171.
  • 10Chen J S, Wang D. A constrained reproducing kernel particle formulation for shear deformable shell in Cartesian coordinates[J]. International Journal for Numerical Methods in Engineering, 2006, 68: 151-172.

共引文献8

同被引文献14

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部