期刊文献+

一种改进鲁棒KPCA算法及其在齿轮泵故障诊断中的应用

A Robust Kernel Principal Component Analysis Algorithm and Its Application to Fault Diagnosis for Gear Pump
在线阅读 下载PDF
导出
摘要 核主元分析(KPCA)是一种有效的非线性特征提取方法,但其缺点是对样本中的野点比较敏感。为了消除野点对KPCA算法的影响,介绍一种鲁棒KPCA算法,通过修改特征空间中映射样本的最小重构误差表达式,并预先定义训练样本集中的野点数目,实现了在特征空间剔除野点的目的。将改进后的鲁棒KPCA算法应用于齿轮泵故障特征提取,试验结果表明:该算法的抗噪性比经典KPCA算法明显增强,能有效区分齿轮泵的不同故障模式。 Kernel principal component analysis is an effective nonlinear feature extraction method, but its drawback is more sensi- tive to outliers in the samples. In order to eliminate the effect of outliers on KPCA algorithm, a robust KPCA algorithm was presented for the purpose of eliminating oufliers in feature space, by modifying the minimum reconstruction error expression of mapping samples in feature space and predefining a few outliers in training sample set. The improved robust KPCA algorithm was applied to fault feature ex- traction for gear pump, The experimental results show that the algorithm not only can significantly enhance noise immunity than classi- cal KPCA algorithm, but also can effectively distinguish between different fault patterns of gear pump.
出处 《机床与液压》 北大核心 2013年第17期171-175,共5页 Machine Tool & Hydraulics
基金 总装备部重点国防预研项目(403040102) 国家自然科学基金青年科学基金项目(61201449)
关键词 鲁棒核主元分析 野点 齿轮泵 故障诊断 Robust kernel principal component analysis Outlier Gear pump Fault diagnosis
作者简介 王涛(1977-),男,博士研究生,副教授,研究方向为故障诊断、统计模式识别等.E-mail:taotaowang0927@sina.com.
  • 相关文献

参考文献9

  • 1SCHOLKOPF B,SMOLA A, MULLER K R. Nonlinear Com- ponent Analysis as a Kernel Eigenvalue Problem [ J ]. Neu- ral Computation, 1998,10 (5) : 1299 - 1319.
  • 2WEN Ying, HE Lianghua, SHI Pengfei. Face Recognition Using Difference Vector Plus KPCA [ J 1. Digital Signal Pro- cessing,2012 (22) : 140 - 146.
  • 3王瀛,郭雷,梁楠.基于优选样本的KPCA高光谱图像降维方法[J].光子学报,2011,40(6):847-851. 被引量:14
  • 4ZVOKELJ Matej, ZUPAN Samo, PREBIL Ivan. Non-linear Multivariate and Muhiscale Monitoring and Signal Denois- ing Strategy Using Kernel Principal Component Analysis Combined with Ensemble Empirical Mode Decomposition Method[ J ]. Mechanical Systems and Signal Processing, 2011 (25) :2631 - 2653.
  • 5蒋静,李志农,易小兵.基于Volterra级数和KPCA的旋转机械故障诊断方法研究[J].噪声与振动控制,2011,31(1):119-122. 被引量:2
  • 6LU Congde, ZHANG Taiyi, ZHANG Ruonan, et al. Adaptive Robust Kernel PCA Algorithm[ C]//ICASSP,2003:621 - 624.
  • 7HUANG Su-Yun, YEH Yi-Ren, EGUCHI Shinto. Robust Kernel Principal Component Analysis [ J I. Neural Compu- tation,2009,21 ( 11 ) :3179 - 3213.
  • 8WANG Lei, PANG Yan-Wei, SHEN Dao-Yi, et al. An Itera- tire Algorithm for Robust Kernel Principal Component A- nalysis[ C//Pmeeedings of the Sixth International Confer- enee on Machine Learning and Cyberneties, Hongkong, 2007 : 3484 - 3489.
  • 9HUANG Hsin-Hsiung, YEH Yi-Ren. An Iterative Algorithm for Robust Kernel Principal Component Analysis [ J ]. Neu- roeomputing,2011 (74) : 3921 - 3930.

二级参考文献18

  • 1Z.Q.Lang,Z.K.Peng.A novel approach for nonlinearity detection in vibrating systems[J].Journal of Sound and Vibration,2008,314(3-5):603-615.
  • 2Z.K.Peng,Z.Q.Lang,F.L.Chu,On the nonlinear effects introduced by crack using nonlinear output frequency response functions[J].Computers & Structure,2008,86(17-18):1809-1818.
  • 3Z Z.K Peng,Z.Q Lang,S.A Billings,Crack detection using nonlinear output frequency response functions[J].Journal of Sound and Vibration,2007,301(3-5):777-788.
  • 4Peng,Z.K.,Lang,Z.Q.and Billings,S.A.The nonlinear output frequency response function and its application to fault detection.The 6th IFAC Symposium on Fault Detection,Supervision and Safety of technical Process,Beijing P R China,August 30-September 1,2006:36-41.
  • 5SHAW G, MANOLAKIS D. Signal processing for hyperspectral image exploitation [ J ]. IEEE Signal Processing, Magazine, 2002, 19(1):12-16.
  • 6LANDGREBE D. Hyperspectral image analysis [J]. IEEE Signal Processing Magazine, 2002, 19(1) : 17-28.
  • 7JIA X, RICHARDS J A. Segmented principal components transformation for efficient hyperspectral remote sensing image display and classification [ J ]. IEEE Transactions on Geosscience and Remote Sensing, 1999, 3"/(1) :538-542.
  • 8STEIN D W J, BEAVEN S J, HOFF L E, et al. Anomaly detection from hyperspectral imagery [ J]. IEEE Signal Processing Magazine, 2002, 19( 1 ) : 58-69.
  • 9FAUVEL M. Decision fusion for hyperspectral classification in hyperspectral data exploitation~ theory and applications[M]. New Jersey John Wiley : Sons, 2007.
  • 10HUGHES G. On the mean accuracy of statistical pattern recog-nizers[J]. IEEE Transactions on Information Theory, 1968, 14(1) :55-63.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部