期刊文献+

热解温度和时间对三种作物残体生物炭pH值及碳氮含量的影响 被引量:32

Effects of pyrolysis temperature and duration time on pH,carbon and nitrogen contents of biochars produced from three crop residues
原文传递
导出
摘要 生物炭的理化性质主要由基质材料和热解条件决定。本试验以玉米棒芯、大豆秸秆和水稻颖壳为生物质材料,以马弗炉为热解设备,研究热解温度(300、350、400、450、500和550℃)和热解时间(3、6和9 h)对生物炭产率、pH和碳氮含量的影响。结果表明:随着热解温度的升高和热解时间的增长,生物炭的产率随之降低,pH随之升高;玉米棒芯生物炭和大豆秸秆生物炭碳含量随着热解温度的升高和热解时间的延长增加,但水稻颖壳生物炭碳含量变化不大;随着热解温度的升高和热解时间的延长,玉米棒芯生物炭和水稻颖壳生物炭氮含量变化无规律,但大豆秸秆生物炭氮含量呈降低趋势。 The physical and chemical properties of biochar are mainly determined by matrix ma- terials and pyrolysis conditions. Taking the corn cob, soybean stalk, and rice husk as test materi- als, and by using muffle furnace, this paper studied the effects of pyrolysis temperature (300, 400, 450, 500, and 550℃ ) and pyrolysis duration (3, 6, and 9 hours) on the biochar yield, its pH, and carbon and nitrogen contents. With the increase of pyrolysis temperature and dura- tion, the biochar yield decreased, while the biochar pH increased. The carbon content of the biochar produced from corn cob and soybean stalk increased with the increase of pyrolysis temper- ature and duration, while that of the biochar produced from rice husk had less change. The nitro- gen content of the biochar produced from soybean stalk decreased with the increase of pyrolysis temperature and duration, while that of the biochar produced from corn cob and rice husk had no regular change.
出处 《生态学杂志》 CAS CSCD 北大核心 2013年第9期2347-2353,共7页 Chinese Journal of Ecology
基金 黑龙江省杰出青年科学基金项目(JC201116) 黑龙江省科技攻关项目(GC12B104) 公益性行业(农业)科研专项经费项目(201303095)资助
关键词 生物炭 玉米棒芯 大豆秸秆 水稻颖壳 热解 碳氮含量 biochar corn cob soybean stalk rice husk pyrolysis carbon and nitrogen contents
作者简介 张千丰,男,1984年生,硕士,主要从事土壤微生物生态研究。E—mail:zhangqfl9851020@163.com
  • 相关文献

参考文献23

  • 1杨玉爱.我国有机肥料研究及展望[J].土壤学报,1996,33(4):414-422. 被引量:157
  • 2Atkinson CJ, Fitzgerald JD, Hipps NA. 2010. Potential mecha- nisms for achieving agricultural benefits from biochar appli- cation to temperate soils: A review. Plant and Soil, 337: 1-18.
  • 3Braadbaart F, Poole I. 2008. Morphological, chemical and physical changes during charcoalification of wood and its relevance to archaeological contexts. Journal of Archaeolog- ical Science, 35: 2434-2445.
  • 4Demirbas A. 2004. Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. Jour- nal of Analytical and Applied Pyrolysis, 72 : 243-248.
  • 5Duan F, Liu X, Yu T, et al. 2004 Identification and estimate of biomass burning contribution to the urban aerosol organic carbon concentrations in Beijing. Atmospheric Environment, 38 : 1275-1282.
  • 6Gaskin JW, Steiner C, Harris K, et al. 2008. Effect of low- temperature pyrolysis eonditions on biochar for agricultural use. Transaction of the American Society of Agricultural and Biological Engineers, 51 : 2061-2069.
  • 7Haefele SI, Konboon Y, Wongboon W, et al. 2011. Effects and fate of biochar from rice residues in rice-based sys- tems. Field Crops Research, 121 : 430-440.
  • 8Jha P, Biswas AK, Lakaria BL, et al. 2010. Biochar in agri- culture: Prospects and related implications. Current Sci- ence, 99: 1218-1225.
  • 9Keiluweit M, Nico PS, Johnson MG, et al. 2010. Dynamic mo- lecular structure of plant biomass-derived black carbon (biochar). Environmental Science and Technology, 44: 1247-1253.
  • 10Kuzyakov Y, Subbotina I, Chen H, et al. 2009. Black carbon decomposition and incorporation into soil microbial biomass estimated by t4C labeling. Soil Biology and Biochemistry, 41 : 210-219.

二级参考文献52

共引文献156

同被引文献442

引证文献32

二级引证文献417

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部