期刊文献+

基于属性层次的规则挖掘方法研究 被引量:1

Research on Method of Rules Mining Based on Attributes Hierarchy
在线阅读 下载PDF
导出
摘要 针对决策表中有隐含属性层次的决策表,讨论了属性层次树,定义出属性层次决策表,提出一个算法来对属性层次决策表进行规则挖掘,并通过实例分析了算法的有效性。实验结果表明,高属性层次决策表的对象数明显少于原决策表对象数。在对象数明显减少的高属性层次决策表上的约简运算量比直接在原决策表上的要减小很多。 Based on the attributes hierarchy decision table, the attributes hierarchy trees were introduced and the con-cept of attributes hierarchy decision table was defined. An algorithm was proposed for the rules mining in the attributes hierarchy decision table and numerical examples were employed to substantiate this algorithm. And the experiment indi- cates that the number of objects in attributes hierarchy decision table is less than original decision table, and the time of implementing attributes reduction is less than that.
出处 《计算机科学》 CSCD 北大核心 2013年第10期198-202,共5页 Computer Science
基金 国家自然科学基金项目(60970061 61075056 61103067) 中央高校基本科研业务费专项资金资助
关键词 属性层次树 属性层次决策表 粗糙集 属性约简 Attributes hierarchy tree, Attribute hierarchy decision table, Rough sets, Attributes reduction
作者简介 杨伟 博士生,主要研究方向为模式识别与智能系统、粗糙集理论、粒计算,E-mail:yangw312@yahoo.com.cn; 苗夺谦 教授,博士生导师,主要研究方向为人工智能、模式识别、知识发现、粗糙集理论等。
  • 相关文献

参考文献21

  • 1Zadeh L A. Fuzzy sets[J]. Advances in Fuzzy Information and Control, 1965,8:338-353.
  • 2Zadeh L A. Fuzzy sets and information granularity[M]//Gupta M,Ragade R,Yager R, eds. Advances in Fuzzy Set Theory and applications. Amstrdam: North-Holland publishing, 1979 : 3-18.
  • 3Zadeh L A. Fuzzy logic-computing with words [J]. IEEE Transaction on Fuzzy System, 1996,4(2) : 103-111.
  • 4Zadeh L A. Towards a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic[J]. Fuzzy Sets and Systems, 1997,90:111-121.
  • 5Lin T Y. Granular computing[R]. Announcement of the BISC special interest group on granular computing, 1997.
  • 6Yao Y Y. Granularity computing:basic issues and possible solu- tions[C]//Proceedings of the 5th Joint Conference on Informa- tion Sciences. 2000:186-189.
  • 7Zadeh L A. Granular computing and rough set theory[C]// LNCS. 2007,4585:1-4.
  • 8Pawlak Z. Rough sets[J]. International Journal of Information and Computer Sciences, 1982,11 : 341-356.
  • 9张铃,张钹.模糊商空间理论(模糊粒度计算方法)[J].软件学报,2003,14(4):770-776. 被引量:208
  • 10张钹,张铃.粒计算未来发展方向探讨[J].重庆邮电大学学报(自然科学版),2010,22(5):538-540. 被引量:22

二级参考文献56

  • 1ZADEH L A. Fuzzy sets and information granularity[ C]// GUPTA M, RAGADE R, YAGER R. Advances in Fuzzy Set Theory and Applications. Amsterdam: North-Holland Publishing Co, 1979:3-18.
  • 2LINT Y. Granular Computing : From Rough Sets and Neighborhood Systems to Information Granulation and Computing in Words [ C ]//European Congress on Intelligent Techniques and Soft Computing, September 8-12, 1997, [ s. l. ] : [ s. n. ], 1997,1602-1606.
  • 3ZADEH L A. Fuzzy sets[J]. Inf and Control, 1965,8: 338-353.
  • 4PAWLAK Z. Rough Sets [ J ]. International Journal of Information and Computer Sciences, 1982, 11(5):341-356.
  • 5HOBBS J. Granularity[ C]//in Proc 9^th IJCAI, Los Angeles, USA: [ s. n. ] , 1985:432-435.
  • 6BAUM L E,PETRIE T. Statistical Inference for Probabilistic Functions of Finite State Markov Chains[J]. The Annals of Mathematical Statistics, 1966, 37 (6) : 1554-1563.
  • 7LAFFERTY J, MCCALLUM A, PEREIRA F C N. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data[ C]//in Proc. of International Conference on Machine Learning (ICML) , San Francisco, CA: Morgan Kaufmann Publishers Inc, USA, 2001 : 282-289.
  • 8TASKAR B, GUESTRIN C, KOLLER D. Max-Margin Markov Networks [ C ]// Advances in Neural Information Processing Systems ( NIPS), [ s. l. ] : MIT Press, 2003.
  • 9ZHU J, XING E P, ZHANG Bo. Laplace Maximum Margin Markov Networks [ C ]// in Proc. of International Conference on Machine Learning (ICML), New York, NY, USA: ACM, 2008 : 1256-1263.
  • 10Yao Y Y. Granular computing: basic issues and possible solutions. In: Proc. of the 5th Joint Conf. on Information Sciences,Volume Ⅰ, Atlantic City, New Jersey, USA, February 27-March 3, 2000, P.P. Wang Ed. , Association for Intelligent Machinery, 2000. 186~189

共引文献264

同被引文献8

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部