摘要
针对基站配置上百个天线的多用户MISO系统上行信号检测问题,结合基于变化的最大似然(ML)代价函数判决门限的随机重启策略,改进主动禁忌搜索(RTS)检测算法性能。仿真实验表明,相比基本的RTS算法以及似然上升搜索算法(LAS)及其变体,在相同条件下该算法误符号率性能更优,尤其是在高阶QAM调制和信道增益矩阵为欠定阵(用户数大于基站天线数)时,其他算法存在严重的性能恶化,而该算法仍能呈现良好的性能。
In order to solve the uplink MISO signal detection problem when the base station was equipped with hundreds of antennas called multi-user massive MISO system, this paper introduced a random restart strategy based on varying maximum likelihood (ML) cost function threshold decision to improve the reactive tabu search (RTS) algorithm. The proposed en- hanced algorithm was shown to achieve better symbol error rate performance compared with the basic RTS algorithm and likeli- hood ascent search algorithm (LAS) and its variants under the same conditions. When the system employs higher-order QAM modulation, other algorithms encountered serious performance deterioration, especially the channel gain matrix is underdeter- mined as the number of users being greater than the number of base station antenna, while the proposed algorithm still could a- chieve a fairly good performance.
出处
《计算机应用研究》
CSCD
北大核心
2013年第10期3057-3060,共4页
Application Research of Computers
基金
国家自然科学基金资助项目(61272333)
安徽省自然科学基金资助项目(1208085MF94)
国防预研基金资助项目(41101040402)
作者简介
康凯(1987-),男,陕西高陵人,博士研究生,主要研究方向为压缩感知、大规模MIMO信号处理(kaikangl987@gmail.com);
钟子发(1957-),男,教授,博导,主要研究方向为通信信号处理、数据融合;
燕展(1987-),男,硕士研究生,主要研究方向为统计信号处理、卫星信号处理.