期刊文献+

用于多用户大规模MISO信号检测的改进主动禁忌搜索算法 被引量:1

Enhanced reactive tabu search algorithm for multi-user massive MISO signal detection
在线阅读 下载PDF
导出
摘要 针对基站配置上百个天线的多用户MISO系统上行信号检测问题,结合基于变化的最大似然(ML)代价函数判决门限的随机重启策略,改进主动禁忌搜索(RTS)检测算法性能。仿真实验表明,相比基本的RTS算法以及似然上升搜索算法(LAS)及其变体,在相同条件下该算法误符号率性能更优,尤其是在高阶QAM调制和信道增益矩阵为欠定阵(用户数大于基站天线数)时,其他算法存在严重的性能恶化,而该算法仍能呈现良好的性能。 In order to solve the uplink MISO signal detection problem when the base station was equipped with hundreds of antennas called multi-user massive MISO system, this paper introduced a random restart strategy based on varying maximum likelihood (ML) cost function threshold decision to improve the reactive tabu search (RTS) algorithm. The proposed en- hanced algorithm was shown to achieve better symbol error rate performance compared with the basic RTS algorithm and likeli- hood ascent search algorithm (LAS) and its variants under the same conditions. When the system employs higher-order QAM modulation, other algorithms encountered serious performance deterioration, especially the channel gain matrix is underdeter- mined as the number of users being greater than the number of base station antenna, while the proposed algorithm still could a- chieve a fairly good performance.
出处 《计算机应用研究》 CSCD 北大核心 2013年第10期3057-3060,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61272333) 安徽省自然科学基金资助项目(1208085MF94) 国防预研基金资助项目(41101040402)
关键词 本地近邻搜索 似然上升搜索 主动禁忌搜索 多用户大规模多入单出系统 local neighborhood search likelihood ascent search reactive tabu search muhi^user massive MISO system
作者简介 康凯(1987-),男,陕西高陵人,博士研究生,主要研究方向为压缩感知、大规模MIMO信号处理(kaikangl987@gmail.com); 钟子发(1957-),男,教授,博导,主要研究方向为通信信号处理、数据融合; 燕展(1987-),男,硕士研究生,主要研究方向为统计信号处理、卫星信号处理.
  • 相关文献

参考文献13

  • 1NGO H Q, LARSSON E G, MARZETTA T L. Energy and spectralefficiency of very large multiuser MIMO systems [ EB/ OL]. [2011].http://arxiv. org/abs/1112. 3810.
  • 2RUSEK F, PERSSON D, LAU BK, et al. Scaling up MIMO: oppor-tunities and challenges with very large arrays[ J]. IEEE Signal Pro-cessing Magazine,2013,30(1) :40-60.
  • 3HOYDIS J, BRINK S T, DEBBAH M. Massive MIMO: how manyantennas do we need. [ C]//Proc of Annual Allerton Conference onCommunication, Control,and Computing. 2011:545-550.
  • 4NGO H Q, LARSSON E G, MARZETTA T L. Uplink power efficien-cy of multiuser MIMO with very large antenna arrays [ C] //Proc ofAnnual Allerton Conference on Communication,Control,and Compu-ting. 2011:1272-1279.
  • 5MARZETTA T L. Noncooperative cellular wireless with unlimitednumbers of base station antennas [ J]. IEEE Trans on WirelessCommunications,2010,9( 11) :3590-3600.
  • 6MOHAMMED S K, CHOCKALINGAM A, RAJAN B S. A low-com-plexity near-ML performance achieving algorithm for large MIMO de-tection [C] //Proc of IEEE International Symposium on InformationTheory. 2008:2012-2016.
  • 7VISHNU V K, MOHAMMED S K, CHOCKALINGAM A,et al. Alow-complexity detector for large MIMO systems and multicarrier CD-MA systems[ J]. IEEE Journal on Selected Areas in Communi-cations, 2008,26(3) :473-485.
  • 8MOHAMMED S K,ZAKI A, CHOCKALINGAM A,et al. High-ratespace-time coded large-MIMO systems : low-complexity detection andchannel estimation[ J]. IEEE Journal of Selected Topics in SignalProcessing,2009,3(6) :958-974.
  • 9LI Peng, MURCH R D. Multiple output selection-LAS algorithm inlarge MIMO systems [J]. IEEE Communications Letters, 2010,14.5) :399-401.
  • 10BATTITI R, TECCHIOLLI G. The reactive tabu search[J]. ORSAJournal on Computing, 1994,6(2) : 126-140.

同被引文献11

  • 1Ngo H Q, Larsson E G, Marzetta T L. Energy and Spectral Efficiency of Very Large Multiuser MIMO Systems[ J ]. IEEE Transactions on Communications, 2013,61 (4) : 1436-1449.
  • 2Hoydis J, Ten Brink S, Debbah M. Massive MIMO:How Many Antennas do We Need [ C ]//Proceedings of the 49th Annual Conference on Communication, Control, and Computing. Washington D. C. , USA: IEEE Press, 2011:545-550.
  • 3Hoydis J,Ten Brink S, Debbah M. Massive MIMO in the UL/DL of Cellular Networks:How Many Antennas Do We Need [ J].IEEE Journal on Selected Areas in Communications, 2013,31 ( 2 ) : 160-171.
  • 4Sundar R B, Mohammed S K, Chockalingam A, et al. Low-complexity near-ML Decoding of Large Non- orthogonal STBCs Using Reactive Tabu Search [ C ]// Proceedings of IEEE International Conference on Information Theory. Washington D. C., USA: IEEE Press. 2009 : 1993-1997.
  • 5Datta T, Srinidhi N, Chockalingam A, et al. Random- restart Reactive Tabu Search Algorithm for Detection in Large-MIMO Systems [ J]. IEEE Communications Letters ,2010,14(12) :1107-1109.
  • 6Srinidhi N, Datta T, Chockalingam A, et al. Layered Tabu Search Algorithm for Large-MIMO Detection and a Lower Bound on ML Performance [ J ]. IEEE Transactions on Communications ,2011,59 ( 11 ) :55-63.
  • 7Hansen M,Hassibi B, Dimakis A G, et al. Near-optimal Detection in MIMO Systems Using Gibbs Sampl- ing[ C]//Proceedings of Global Telecommunications Conference. Washington D. C. , USA : IEEE Press ,2009 : 1-6.
  • 8Mohammed S K,Zaki A, Chockalingam A, et al. High- rate Space-time Coded Large-MIMO Systems: Low- complexity Detection and Channel Estimation [ J]. IEEE Journal of Selected Topics in Signal Processing, 2009, 3 ( 6 ) : 958-974.
  • 9Agrell E, Eriksson T, Vardy A, et al. Closest Point Search in Lattices [ J ]. IEEE Transactions on Information Theory ,2002,48 ( 8 ) :2201-2214.
  • 10马小晶,刘亮,叶凡,任俊彦.基于可配置型K-Best的MIMO信号检测器[J].计算机工程,2009,35(24):236-238. 被引量:7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部