期刊文献+

混菌发酵甘蔗糖蜜产维生素B_(12)和维生素B_2的工艺优化

Optimization of the fermentation of Vitamin B_(12) and Vitamin B_2 from cane molasses by mixture-culture fermentation
在线阅读 下载PDF
导出
摘要 采用响应面分析法(RSM)优化谢氏丙酸杆菌和枯草芽孢杆菌混合发酵产维生素B12(VB12)和维生素B2(VB2)的工艺条件。在培养时间、糖蜜浓度、温度、接种量、装液量、发酵初始pH的单因素实验基础上,采用Box-Behnken实验设计,通过响应面分析,对混菌的发酵工艺条件进行优化。得出最佳工艺条件为:糖蜜浓度20%(v/v),装液量100mL/300mL三角瓶,混菌接种量18%(v/v,单菌接种量1∶1),发酵温度30℃,发酵时间72h,初始pH7.0,在此条件下VB12与VB2的产量分别为262.54mg/L和10.14g/L,产量较单菌培养时的最高产量分别提高了13.16%和12.42%。 Response surface methodology was used to optimize fermentation conditions for Vitamin B12 and Vitamin B2 from cane molasses by mixture-culture. Based on results of single factor experiments, Box-Behnken experiment design was used to analyze and optimize fermentation time,molasses concentration,temperature, vaccination quantity,installs liquid volume and initial pH value. Optimal fermentation conditions were determined as follows=molasses concentration 20% (v/v),installs liquid volume 100mL/300mL flask,vaccination quantity 18% (v/v),temperature 30℃,fermentation time 72h,initial pH value 7.0. Further validation experiments showed that the production of Vitamin B12 and Vitamin B2 were 262.54mg/L and 10.14g/L,which were higher than single bacterium cultivation of maximum yield increased by 13.16% and 12.42% respectively.
出处 《食品工业科技》 CAS CSCD 北大核心 2013年第20期302-307,共6页 Science and Technology of Food Industry
基金 甘蔗糖蜜发酵生产维生素B12添加剂的研究(2011GXNSFA018124) 广西农业科学院基本科研业务专项(桂农科2012YM24)
关键词 甘蔗糖蜜 混菌发酵 维生素B12 维生素B2 cane molasses mixture-culture fermentation Vitamin B12 Vitamin B2
作者简介 麻少莹(1988-),女,硕士研究生,研究方向:糖生物技术与制糖工程技术。 通讯联系人
  • 相关文献

参考文献12

二级参考文献35

  • 1陈庆森,张晓玲,张光兴.固定化活性干酵母细胞生产转化糖的研究[J].天津商学院学报,1994,14(3):11-15. 被引量:3
  • 2Quesada-Chanto A, Afschar AS, Wagner F. Microbial production of propionic acid and vitamin B12 using molasses or sugar. Appl Mivrobiol Biotechnol, 1994, 41(4) 378-383.
  • 3Miyano KI, Ye KM, Shimizu K. Improvement of vitamin B12 fermentation by reducing the inhibitory metabolites by cell recycle system and a mixed culture. Biochemical Engineering Journal, 2000, 6(3): 207-214.
  • 4Sattler I, Roessner CA, Stolowich NJ, Hardin SH, Harris-hailer LW, Yokubaitis NT, Murooka Y, Hashimoto Y, Scott AI. Cloning, sequencing, and expression of the uroporphyrinogen Ⅲ methyltransferase cobA gene of Propionibacterium freudenreichii (shermanii). Journal of Bacteriology, 1995, 177(6): 1564-1569.
  • 5Kiatpapan P, Hashimoto Y, Nakamura H, Piao YZ, Ono H, Yamashita M, Murooka Y. Characterization of pRGO1, a plasmid from Propionibacterium acidipropionici, and its use for development of a host-vector system in propionibacteria. Appl Environ Microbiol, 2000, 66(11): 4688-4695.
  • 6Jore JPM, Luijk NV, Luiten RGM, Weft MJ, Pouwels PH. Efficient transformation system for Propionibacterium freudenreichii based on a novel vector. Applied and Environmental Microbiology, 2001, 67(2): 499-503.
  • 7Kiatpapan P, Murooka Y. Genetic manipulation system in propionibacteria. Journal of Bioscience and Bioengineering, 2002, 93 ( 1 ): 1-8.
  • 8Piao Y, Yamashita M, Kawaraichi N, Asegawa R, Ona H, Murooka Y. Production of vitamin B12 in genetically engineered Propionibacterium fredenreichii. J Biosci Bioengineering, 2004, 98(3): 167-173.
  • 9Marwaha SS, Sethi RP, Kennedy JE Role of amino acids, betaine and choline in vitamin B12 biosynthesis by strains of propionibacterium. Enzyme-Microb-Tech, 1983. 5(6): 454-456.
  • 10邓建仙.功能性食品生物技术,北京:中国轻工业出版社,2004.

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部