期刊文献+

紧支Shepard近似在拓扑优化中的应用研究 被引量:1

Application of compactly supported Shepard approximation in topology optimization
原文传递
导出
摘要 为了解决有限元拓扑优化的数值不稳定性问题,以紧支径向基函数作为Shepard插值函数的权函数,建立了紧支Shepard近似函数,用近似函数替代原有离散的密度场量和敏度场量,构造了光滑的密度场和敏度场,提出了用于拓扑优化的密度近似法和敏度近似法.数值算例表明:密度近似法和敏度近似法能有效解决棋盘格和网格依赖性等数值不稳定性问题,随着网格密度的增加,密度近似法得到的拓扑图形的灰度单元成正比增加,但敏度近似法能有效地抑制灰度单元. To examine the numerical instabilities in the topology optimization by finite element method, compactly supported radial basis function was employed as the weight function of Shepard method to construct a compactly supported Shepard approximation function. Continuous density field and sensitivity field were established by replacing the original discrete density variables and sensitivity variables with the approximations based on Shepard function. Density approximation and sensitivity approximation methods were thus proposed for topology optimization. Numerical examples show that checkerboard pattern and mesh dependency problems can be solved by the density approximation and sensitivity approximation methods. As the refinement of mesh size increases, the gray scale elements of topology optimization results obtained from the density approximation method increase proportionally. However, the sensitivity approximation method can suppress the grey scale elements effectively.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第8期101-105,共5页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(51105229) 湖北省自然科学基金资助项目(2010CDB10805) 三峡大学水电机械设备设计与维护湖北省重点实验室开放基金资助项目(2010KJX04)
关键词 拓扑优化 数值不稳定性 Shepard近似函数 密度近似 敏度近似 topology optimization numerical instabilities Shepard approximation function density approximation sensitivity approximation
作者简介 杜义贤(1978一),男,副教授,E—mail:duyixian2005@yahoo.com.cn.
  • 相关文献

参考文献10

  • 1Bendsφ e M P, Kikuchi N. Generating optimal topolo- gies in structural design using a homogenization meth- od[J]. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2) : 197-224.
  • 2Bendsoe M P, Sigmund O. Topology optimization: theory, methods and applications[M]. Berlin.. Springer Verlag, 2003.
  • 3Rahmatalla S F, Swan C C. A Q4/Q4 continuum structural topology optimization implementation [J]. Structural and Multidisciplinary Optimization, 2004, 27(1-2) : 130-135.
  • 4李震,孙宝元,钱敏,张军.基于节点密度的柔性机构的拓扑优化设计[J].计算力学学报,2007,24(2):130-134. 被引量:15
  • 5龙凯,左正兴.基于节点独立变量的连续体结构动态拓扑优化[J].固体力学学报,2008,29(1):91-97. 被引量:5
  • 6Brodlie K W, Asim M R, Unsworth K. Constrained visualization using lhe Shepard interpolation family [J]. Computer Graphics Forum, 2005, 24(4): 809- 820.
  • 7Kang Zhan, Wang Yiqiang. Structural topology optb mization based on non-local Shepard interpolation of density field[J]. Computer Methods in Applied Me- chanics and Engineering, 2011, 200 (49-52) : 3515- 3525.
  • 8Luo Zben, Zhang Nong, Wang Yu, et al. Topology optimization of structures using meshless density vari- able approximants[J]. International Journal for Nu- merical Methods in Engineering, 2013, 93(4): 443-464.
  • 9Wu Zongmin. Compactly supported positive definite radial functions[J]. Advances in Computational Math- ematics,1995,4(1) : 283-292.
  • 10Fasshauer G E. Meshfree approximation methods with MATLAB[-M]. Singapore.. World Scientific Publishing Co, 2007.

二级参考文献24

共引文献16

同被引文献6

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部