期刊文献+

基于纳米光学透镜的激光捕获瑞利粒子研究 被引量:1

Studyon Laser Trapping Rayleigh Particles Based on the Nanolens
原文传递
导出
摘要 提出用纳米光学透镜替代传统光镊装置中的大数值孔径几何光学透镜来捕获瑞利粒子的设想,基于电磁场时域有限差分方法计算了平面波经过纳米透镜后的衍射光场,并结合点偶极子近似计算了瑞利粒子在透镜衍射光场中的受力。研究结果表明,与传统光镊最好的情况(焦斑接近衍射极限)相比,本方案的捕获效率、稳定捕获区长度和光镊的品质因子都有很大程度的改善,尤其是出现在纳米透镜两侧的捕获区,对瑞利粒子的捕获效率和品质因子可提高2~3个量级,而且捕获粒子的受力具有强偏振相关性(不同于传统光镊),可用来实现粒子的旋转操作。 An idea that Rayleigh particles can be captured by replacing the geometry optical lens in the traditional optical tweezers with nano-lens is proposed. We calculate the diffraction field of a plane wave passed through the nano-lens by using the finite difference time domain (FDTD) method and the radiation force acted on the Rayleigh particles in the field based on the point dipole approximation method. The results show that, comparing to best results (focal spot close to the diffraction limit) of conventional optical tweezers, the trapping efficiency, stable trapping zone length and quality factor of the proposed tweezers can be greatly improved. Especially for the two capture zones on the both sides of nano-lens, the trapping efficiency and quality factor can be improved by 2 to 3 orders of magnitude, and also the force of trapped particles has a strong polarization dependence (unlike conventional optical tweezers), which can be used to achieve rotation operation of particles.
作者 刘子龙 张波
出处 《光学学报》 EI CAS CSCD 北大核心 2013年第9期325-334,共10页 Acta Optica Sinica
基金 中央高校基本科研业务费专项资金(2012-Ia-048)
关键词 衍射 光镊 激光捕获 纳米透镜 瑞利粒子 diffraction optical tweezers laser trappings nano-lens Rayleigh particles
作者简介 刘子龙(1972-),男,博士,副教授,主要从事光与物质相互作用方面的研究。E-mail:liuyu-7212@163.com
  • 相关文献

参考文献2

二级参考文献41

  • 1M. J. Guffey, N. F. Scherer. All-optical patterning of Au nanoparticles on surfaces using optical traps [J]. Nano Lett., 2010, 10(11) : 4302-4308.
  • 2A. N. Grigorenko, N. W. Roberts, M. R. Dickinson et al.. Nanometric optical tweezers based on nanostructured substrates [J]. Nature Photonics, 2008, 2(6): 365-370.
  • 3S. H. Tao, X. C. Yuan, J. Lin et al.. Fractional optical vortex beam induced rotation of particles [J]. Opt. Eocpress, 2005, 13 (20): 7726-7731.
  • 4Z. Liu, C. Guo, J. Yang et al.. Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application [J]. Opt. Eacpress, 2006, 14(25): 12510-12516.
  • 5Z. H. Hu, J. Wang, J. W. I.iang. Manipulation and arrangement of biological and dielectric particles by a lensed fiber probe [J]. Opt. Eapress, 2004, 12(17): 4123-4128.
  • 6S. Mandal, X. Serey, D. Erickson. Nanomanipulation using silicon photonic crystal resonators [J]. Nano Lett., 2010, 10(1) : 99-104.
  • 7S. Kawata, T. Sugiura. Movement of micrometer sized partieies in the evanescent field of a laser beam [J ].Opt. :ett. , 1992, 17(11): 772--774.
  • 8B. S. Schmidt, A. H. J. Yang, D. Ericksonet al.. Optofluidic trapping and transport on solid core waveguides within a microfluidic device [J].Opt. Express, 2007, 15 ( 22 ) : 14322--14334.
  • 9A. H. J. Yang, D, Erickson. Stability analysis of optoftuidic transport on solid core waveguiding structures [J]. Nanotechnology, 2008, 19(4): 045704.
  • 10S. Gaugiran, S. Getin, J. M. Fedeliet al.. Optical manipulation of microparticles and cells on silicon nitride waveguides [J]. Opt. E, rpress, 2005, 13(18): 6956-6963.

共引文献19

同被引文献13

  • 1A Ashkin, J M Dziedzic. Observation of a single-beam gradient force optical trap for dielectric particles[J]. Opt Lett, 1986, 11(5): 288-290.
  • 2A Kauppila, M Kinnunen, A Karmenyan, et al.. Measurement of the trapping efficiency of an elliptical optical trap with rigid and elastic objects[J]. Appl Opt, 2012, 51(23): 5705-5712.
  • 3T H Liu, J L Xiao, C H Lee, et al.. Measurement of membrane rigidity on trapped unilamellar phospholipid vesicles byusing differential confocal microscopy[J]. Appl Opt, 2011, 50(19): 3311-3315.
  • 4A Ashkin, J M Dziedzic, J E Bjorkholm, et al.. Observation of a single-beam gradient force optical trap for dielectric particles[J]. Opt Lett, 1986, 11(5): 288-290.
  • 5H Furukawa, I Yamaguchi. Optical trapping of metallic particles by a fixed Gaussian beam[J]. Opt Lett, 1998, 23(3): 216-218.
  • 6Y Harada, T Asakura. Radiation forces on a dielectric sphere in the Rayleigh scattering regime[J]. Opt Commun, 1996, 124(5-6): 529-541.
  • 7Q Zhan. Trapping metallic Rayleigh particles with radial polarization[J]. Opt Express, 2004, 12(15): 3377-3382.
  • 8K Prabakaran, K B Rajesh, T V S Pillai, et al.. Generation of multiple focal spot and focal hole of sub wavelength scale using phase modulated LG (1,1) beam[J]. Optik, 2013, 124(21): 5086-5088.
  • 9P Zemtnek, A Jond, L rmek, et al.. Optical trapping of Rayleigh particles using a Gaussian standing wave[J]. Opt Commun, 1998, 151(4-6): 273-285.
  • 10Y Zhang, Y Dai. Multifocal optical trapping using counter-propagating radially-polarized beams[J]. Opt Commun, 2012, 285(5): 725-730.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部