期刊文献+

面向战场态势评估的联合树相关推理

Situation Assessment Based on Junction Tree Relevance Reasoning
在线阅读 下载PDF
导出
摘要 本文首先从战场态势与事件间的因果关系出发,构建了用于态势评估的贝叶斯网络推理模型;分析了联合树算法在态势评估中所存在的问题,结合基于D分离的相关推理在模型结构挖掘方面的特性,提出了一种联合树相关推理方法;最后,通过实验验证了该方法的有效性和准确性,为态势评估下的精确推理提供了一种有效的解决方案. In this paper, first a Bayesian network reasoning model for situation assessment is built according to the causal link between the battlefield situation and events. Then a problem occurred when applying junction tree algorithm to situation assessment is analyzed. Combining with the characteristics of relevance reasoning based D-- Separation in model structure mining, a junction tree relevance reasoning method is proposed. Finally, the validity and accuracy of the method is verified by experiment, providing an effective solution of precise reasoning under situation assessment.
出处 《微电子学与计算机》 CSCD 北大核心 2013年第9期26-29,共4页 Microelectronics & Computer
基金 国家十二五探索项目(8134226)
关键词 态势评估 贝叶斯网络 联合树 相关推理 situation assessment~ Bayesian network~ junction tree relevance reasoning
作者简介 张海生男,(1986-),硕士研究生.研究方向为战场态势评估、贝叶斯网络推理. 缪禅娜女,(1988-),硕士研究生.研究方向为战场态势评估下的时间序列预测.
  • 相关文献

参考文献6

  • 1Xia Y, Prasanna V K. Junction tree decomposition for parallel exact inference[C]// Proceedings of the 22nd IEEE International Parallel and Distributed Processing Symposium. USA: Uiami, Florida, 2008.
  • 2马静,李伟华.基于贝叶斯网络的战场目标威胁评估[J].微电子学与计算机,2009,26(7):84-87. 被引量:8
  • 3厉海涛,金光,周经伦,周忠宝,李大庆.贝叶斯网络推理算法综述[J].系统工程与电子技术,2008,30(5):935-939. 被引量:56
  • 4Cooper G F. The computational complexity of probabi- listic inference using bayesian belief networks[J].Ar- tificial Intelligence, 1990(42) : 393-405.
  • 5Pearl J F. Propagation and structuring in belief net- works[J]. Artificial Intelligence, 1986,29 (3) : 241- 288.
  • 6Lin Y, Drudzel M J. Computational advantages of rel- evance reasoning in bayesian belief networks [C] /// Proceedings of the Thirteenth Conference, Morgan Kaufmann, San Francisco, Uncertainty in Artificial Intelligence: CA, 1997.

二级参考文献47

  • 1刘伟娜,霍利民,张立国.贝叶斯网络精确推理算法的研究[J].微计算机信息,2006,22(03X):92-94. 被引量:33
  • 2王朔,周少平,黄教民.基于贝叶斯网络的威胁识别[J].计算机工程与设计,2006,27(18):3442-3443. 被引量:11
  • 3Zhang N L, Poole D. A simple approach to Bayesian network computations[C].Proceedings of the Tenth Canadian Con ference on Artifieial Intelligence, 1994 : 171 - 178.
  • 4Dechter R. Bucket elimination: a unifying framework for probabilistic inference[C].Proceedings of the Twelthth Confer ence on Uncertainty in Artificial Intelligence, Portland, Oregon, 1996: 211-219.
  • 5Kask K, Dechter R, Larrosa J, et al. Bucket-tree elimination for automated reasoning [J]. Artificial Intelligence, 2001 (125): 91-131.
  • 6Zhang N L, Poole D. Exploiting causal independence in Bayesian network inference[J]. Journal of Artificial Intelligence Research, 1996(5) : 301 - 328.
  • 7Amestoy P R, Davis T A, Du I S. An approximate minimum degree ordering algorithm[J]. AIAM Journal of Matrix Analysis and Aplications, 1996, 17(4) : 886 - 905.
  • 8Shachter R. Evidence absorption and propagation through evidence reversals [J]. Uncertainty in Artificial Intelligence, 1990(5): 173 - 190.
  • 9Adrian Y W C, Boutilier C. Structured Arc Reversal and Simulation of Dynamic Probabilistic Networks[C].Proceedings of the Thirteenth ConJerence on Uncertainty in AI (UAI-97), 1997.
  • 10Darwiche A. A differential approach to inference in Bayesian networks (Tech. Rep. Nos. D-108)[R]. Los Angeles: Computer Science Department, UCLA, 1999.

共引文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部