期刊文献+

基于改进型CLAFIC学习子空间算法的有限汉字集识别 被引量:2

Recognition of A Limited Chinese Character Set Based on Improved CLAFIC LSM Algorithm
在线阅读 下载PDF
导出
摘要 采用改进型 CL AFIC(Class- Featuring Inform ation Compression)算法可以为学习子空间 L SM(L earningSubspace Method)算法提供更好的初始向量子空间 ,并通过 L SM算法对各类样本子空间按不同的旋转方式训练 ,来提高 OCR的识别率 .该文的特点在于首先采用了学习子空间算法来实现字符在灰度图像上的识别 ,它克服了传统的基于二值化图像进行特征提取和识别所带来的主要弊病 ,最大限度地保存了字符特征 .应用结果也表明 :采用改进型 CL AFIC的学习子空间算法 ,能在原有较高 OCR识别率的基础上得到进一步的提高 ,实用价值很高 . The improved Class Featuring Information Compression (CLAFIC) algorithm can provide a better initial subspace for Learning Subspace Method (LSM). On the base of these subspaces, training of each subspace is rotated in different ways by LSM, which conduces to improving recognition rate of optical character recognition (OCR). The characteristic of this paper is to realize the optical character recognition by adopting LSM on character gray scale level, and therefore overcomes main shortages of classification on the binary scale level, and keeps integrity features of character information to the extreme. The results show that the effect of recognition has been improved by the CLAFIC LSM algorithm, which makes it highly worth applying to OCR fields.
出处 《计算机学报》 EI CSCD 北大核心 2000年第7期679-684,共6页 Chinese Journal of Computers
关键词 改进型CLAFIC算法 学习子空间算法 字符识别 improved CLAFIC algorithm, LSM, recognition of gray scale Optical Character Recognition, image information features, recognition of similar character on shape
  • 相关文献

参考文献6

二级参考文献2

共引文献181

同被引文献9

  • 1李洪升.基于神经网络的汽车牌照自动识别研究:学位论文[M].西安:西安电子科技大学机电工程学院,1999..
  • 2吕成国 王承发 张磊.G-Force和Lombard影响下变异语音谱图[J].高技术通讯,2000,:377-377.
  • 3Womack B D,Hansen J H L.Classification of speech under stress using target driven features[J].Speech Communication, 1996,20(1/2) :131.
  • 4Sarikaya R,Gowday J N.Subband based classification of speech under stress[C]//ICASSP'98,1998.1:569.
  • 5Zhou G,Hansen J H L.Methods for stress classification:nonlinear TEO and linear speech based features[C]//Proceedings of ICASSP'99,1999: 2087.
  • 6Zhou G,Hansen J H L,Kaiser J F.Nonlinear feature based classification of speech under stress[C]//ICASSP'2001,2001:201.
  • 7E欧亚.子空间法模式识别[M].北京:科学出版社,1987..
  • 8王玉伟,张磊,韩纪庆.一种基于非线性特征的应力影响下变异语音识别方法[J].信号处理,2002,18(5):484-486. 被引量:3
  • 9马永林,韩纪庆,张磊,吕成国,王承发.基于Teager能量算子(TEO)基频的应力影响下的变异语音分类[J].声学学报,2002,27(6):518-522. 被引量:14

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部