期刊文献+

非倍测度空间上的Calderón-Zygmund算子(英文) 被引量:1

Calderón-Zygmund Operators With Non-doubling Measures
原文传递
导出
摘要 综述回顾了带有非倍测度的欧氏空间R^d上的Calderon-Zygmund理论中的基本结果.在该背景下欧氏空间上所赋予的测度μ不需要满足通常的双倍条件,只需满足如下增长性条件,即存在正常数n∈(0,d]以及C使得对任意的x∈R^d和r∈(0,∞),μ(B(x,r))≤Cr^n.回顾的主要结果包括:Hardy空间H^1(μ)与正则BMO空间RBMO(μ);与H^1(μ)以及RBMO(μ)相关的插值定理;Calderon-Zygmund分解;T(1)定理与Calderon-Zygmund算子在Lebesgue空间和Hardy空间上的有界性;Cotlar不等式与极大Calderon-Zygmund算子的有界性;多线性Calderon-Zygmund算子在乘积Lebesgue空间上的性质;Calderon-Zygmund算子的加权模不等式;由Calderon-Zygmund算子与RBMO(μ)函数所生成的交换子的有界性.此外,作者还介绍了该研究方面的一些最新进展与成果. In this survey, the authors review some basic results on Calderon-Zygmund theory on R^d with the non-doubling Radon measure #. Instead of the usual doubling condition, the measure μ is only assumed to satisfy some growth condition, that is, there exist positive con- stants n ∈ (0, d] and C such that p(B(x, r)) 〈 Crn for all x ∈ R^d and r E (0, ∞). In this setting, the results that we review are the following: the Hardy space H1 (μ) and the regularized BMO space RBMO(μ), some interpolation results related to H^1(μ) and RBMO(μ), the Calderon- Zygmund decomposition, the T(1) theorem and the properties of the Calderon-Zygmund operator on Lebesgue spaces and Hardy spaces, Cotlar's inequality and the boundedness of the maximal Calderon-Zygmund operator, the behaviors of the multilinear Calderon-Zygmund operator on Lebesgue spaces, weighted norm inequalities for the CalderSn-Zygmund operator, the boundedness of the commutator generated by the Calderon-Zygmund operator and RBMO(μ) function. Moreover, some new progress obtained recently is also included.
作者 胡国恩 孟岩
出处 《数学进展》 CSCD 北大核心 2013年第4期417-440,共24页 Advances in Mathematics(China)
基金 The first author is supported by NSFC(No.10971228)and the second author supported by NSFC(No.11171027)
关键词 非双倍测度 CALDERON-ZYGMUND算子 LEBESGUE空间 H^1(μ) RBMO(μ) non-doubling measure Calderon-Zygmund operator Lebesgue space H^1(μ) RBMO(μ)
作者简介 E-mail: Corresponding author: mengyan@ruc.edu.cn
  • 相关文献

参考文献9

二级参考文献64

共引文献51

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部