期刊文献+

基于ELM的跨越前馈神经网络及其应用研究 被引量:6

Span feedforward neural network based on ELM and its application
在线阅读 下载PDF
导出
摘要 针对基于ELM学习算法的单隐含层前馈神经网络需要较大的网络规模、影响网络泛化能力的问题,基于新皮层内神经元的连接特点,在前馈神经网络中引入不同层神经元之间的跨越连接,构造跨越前馈神经网络。同时,基于ELM学习算法设计适用于跨越前馈神经网络的学习算法,提高网络的学习能力。Image Segmentation多分类问题及直线一级倒立摆系统控制的实验研究表明,该方法能够提高网络的学习能力,具有明显的优势。 The single-hidden layer feedforward neural network (SLFN) based on ELM needs larger-scale network structure to solve practical applications, which will influence the generalization capability. In order to solve the problem, a span feedforward neural network (SFN) is proposed based on the characteristic of neocortex neurons. The span connections between any two non-adjacent layers were introduced into this network. At the same time, an improved learning algorithm based on ELM is presented, the proposed approach of span feedforward neural network and improved ELM learning algorithm is used for some benchmark problems. The study on Image Segmentation multi-classification problem and linear 1-stage inverted pendulum system control show that the proposed approach performs better than SLFN and ELM, and it could improve the learning ability of the nerwork.
出处 《现代电子技术》 2013年第15期108-111,共4页 Modern Electronics Technique
基金 国家863计划项目(2012A006402)
关键词 神经网络 跨越连接 极速学习机 倒立摆系统 neural network span connection extreme learning machine inverted pendulum system
作者简介 石红伟 男,1983年出生,河北人,硕士,助理工程师。研究方向包括人工智能、系统建模与控制等。
  • 相关文献

参考文献11

  • 1DAVANIPOOR M, ZEKRI M, SHEIKHOLESLAM F. Fuzzy wavelet neural network with an accelerated hybrid learning algorithm [J]. IEEE Transactions on Fuzzy Systems, 2012, 20 (3) : 463-470.
  • 2MOALLEM P, AYOUGHI S A. Removing potential fiat spots on error surface of multilayer perceptron (MLP) neural networks [J]. International Journal of Computer Mathematics, 2011, 88 (1): 21-36.
  • 3HE H B, NI Z, FU J. A three-network architecture for on-line learning and optimization based on adaptive dynamic programming [J]. Neurocomputing, 2012, 78(1): 3-13.
  • 4HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: theory and applications [J]. Neurocomputing, 2006, 70(1-3) : 489-501.
  • 5HUANG G B, WANG D H, LAN Y. Extreme learning ma- chines: a survey [J]. International Journal of Machine Learning and Cybernetics, 2011, 2(2) : 107-122.
  • 6HAWKINS J, BLAKESLEE S. On intelligence [M]. United States:Times Books, 2004.
  • 7LORENTE DE NO R. Cerebral Cortex: architecture, intracortical connections, motor projections [J]. Physiology of the nervous system, 1938: 274-313.
  • 8PETERS A, SETHARES C. Myelinated axons and the pyramidal cell modules in monkey primary visual cortex [J]. The Journal of Comparative Neurology, 1996, 365(2): 232-255.
  • 9BLAKE C L, MERZ C J. UCI repository of machine learning databases [EB/OL]. [1998-05-25]. http ://www.ics.uci.edu/ -mlearn/MLRepository.html.
  • 10ZHU Q, QIN A K, SUGANTHAN P N, et al. Evolutionary extreme learning machine [J]. Pattern recognition, 2005, 38 (10) : 1759-1763.

同被引文献41

引证文献6

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部