期刊文献+

A variable weight approach for evidential reasoning 被引量:2

A variable weight approach for evidential reasoning
在线阅读 下载PDF
导出
摘要 A variable weight approach was proposed to handle the probability deficiency problem in the evidential reasoning (ER) approach. The probability deficiency problem indicated that the inadequate information in the assessment result should be less than that in the input. However, it was proved that under certain circumstances, the ER approach could not solve the probability deficiency problem. The variable weight approach was based on two assumptions: 1) the greater weight should be given to the rule with more adequate information; 2) the greater weight should be given to the rules with less disparate information. Assessment results of two notional case studies show that 1) the probability deficiency problem is solved using the proposed variable weight approach, and 2) the information with less inadequacy and more disparity is provided for the decision makers to help reach a consensus. 一条可变重量途径被建议在证据的推理处理概率缺乏问题(嗯) 途径。概率缺乏问题显示在评价结果的不适当的信息应该是不到那在输入。然而,在某些情形下面, ER 途径不能解决概率缺乏问题,这被证明。可变重量途径基于二个假设:1 ) 更大的重量应该与更足够的信息被给规则;2 ) 更大的重量应该与不太迥异的信息被给规则。二概念的案例研究的评价结果显示出那 1 ) 概率缺乏问题用建议可变重量途径被解决,并且 2 ) 有更少的机能不全的信息和更多的不同被提供决定制造者帮助到达一致。
出处 《Journal of Central South University》 SCIE EI CAS 2013年第8期2202-2211,共10页 中南大学学报(英文版)
基金 Foundation item: Projects(70901074, 71001104, 71201168) supported by the National Natural Science Foundation of China
关键词 probability deficiency evidential reasoning (ER) inadequate information variable weight CONSENSUS 证据推理 推理方法 重量 变权重 概率 信息 决策者 评估
作者简介 Corresponding author: LI Meng-jun, Professor, PhD; Tel: +86-13755137288; E-mail: mjli 11260744@gmail.com
  • 相关文献

参考文献29

  • 1FRANKE V. Decision making under uncertainty: Using case studies for teaching strategy in complex environments [J]. Journal of Military and Strategic Studies, 2011, 13(2): 1-21.
  • 2CHEN Xiao-hong, ZHOU Yan-ju, HU Dong-bin. A problem solving framework for group support system [J]. Journal of Central South University of Technology, 2002, 9(4): 7121-7131.
  • 3OBERKAMPF W L, HELTON J C, JOSLYN C. A. Challenge problems: Uncertainty in system response given uncertain parameters [J]. Reliability Engineering and System Safety, 2012, 85(1): 9-11.
  • 4HELTON J C, OBERKAMPF W L. Alternative representations of epistemic uncertainty [J]. Reliability Engineering & System Safety,2004, 85(1/3): 1-10.
  • 5YANG Jian-bo. Rule and utility based evidential reasoning approach for multiple attribute decision analysis under uncertainty [J]. European Journal of Operational Research, 2001, 131(1): 31— 61.
  • 6YANG Jian-bo, LIU Jun, WANG Jin, SU How-sing, WANG Hong-wei. Belief rule-base inference methodology using the evidential reasoning approach-RIMER [J]. IEEE Transactions on Systems, Man, and Cybernetics, 2006, 36(2): 266-285.
  • 7YANG Ying-ming, YANG Jian-bo, XU Dong-ling. Environmental impact assessment using the evidential reasoning approach [J]. European Journal of Operational Research, 2006, 174(3): 1885— 1913.
  • 8FU Chao, YANG Shan-lin. The combination of dependence-based interval-valued evidential reasoning approach with balanced scorecard for performance assessment [J]. Expert Systems with Applications, 2012, 39(3): 3717-3730.
  • 9ZHOU Zhi-jie, HU Chang-hua, YANG Jian-bo, XU Dong-ling, ZHOU Dong-hua. Online updating belief-rule-based systems for pipeline leak detection under expert intervention [J]. Expert Systems with Applications, 2009, 36 (4): 7700-7709.
  • 10TANG Da-wei, YANG Jian-bo, CHIN Kwai-sang, WONG Zoie S Y, LIU Xin-bao. A methodology to generate a belief rule base for customer perception risk analysis in new production development[J]. Expert Systems with Applications, 2011, 38 (5): 5373—5383.

二级参考文献31

  • 1C.L.Hwang,K.Yoon.Multiple Attribute Decision Making,Springer-Verlag,Berlin,1981.
  • 2H.S.Shih,H.J.Shyur,E.S.Lee.An extension of TOPSIS for group decision making.Mathematical and Computer Modelling,vol.45,no.7,pp.801-813,2007.
  • 3C.T.Chen,C.T.Lin,S.F.Huang.A fuzzy approach for supplier evaluation and selection in supply chain management.International Journal of Production Economics,vol.102,no.2,pp.289-301,2006.
  • 4H.Deng,C.H.Yeh,R.J.Willis.Inter-company comparison using modified TOPSIS with objective weights.Computers& Operations Research,vol.27,no.10,pp.963-973,2000.
  • 5M.F.Chen,G.H.Tzeng.Combining grey relation and TOPSIS concepts for selecting an expatriate host country.Mathematical and Computer Modelling,vol.40,no.13,pp.1473-1490,2004.
  • 6Y.M.Wang,T.M.S.Elhag.Fuzzy TOPSIS method based on alpha level sets with an application to bridge risk assessment.Expert Systems with Applications,vol.31,no.2,pp.309-319,2006.
  • 7T.C.Chu.Facility location selection using fuzzy TOPSIS under group decisions.International Journal of Uncertainty Fuzziness and Knowledge-Based Systems,vol.10,no.6,pp.687-701,2002.
  • 8T.C.Chu,Y.C.Lin.A fuzzy TOPSIS method for robot selection.International Journal of Advanced Manufacturing Technology,vol.21,no.4,pp.284-290,2003.
  • 9S.Balli,S.Korukoglu.Operating system selection using fuzzy AHP and TOPSIS methods.Mathematical & Computational Applications,vol.14,no.2,pp.119-130,2009.
  • 10T.C.Wang,H.D.Lee.Developing a fuzzy TOPSIS approach based on subjective weights and objective weights.Expert Systems with Applications,vol.36,no.5,pp.8980-8985,2009.

同被引文献39

  • 1CAl N, ZHONG Y. Formation controllability of high-order linear time-invariant swarm systems[J]. lET Control Theory Appl, 2010, 4(4): 646-654.
  • 2XIAO F, WANG F, CHEN J, GAO Y. Finite-time formation control for multi-agent systems[J]. Automatica, 2009, 45(11): 2605-2611.
  • 3OLFATI-SABER R. Flocking for multi-agent dynamic systems: Algorithms and theory[J]. IEEE Trans Automat Control, 2006, 51(3): 401-420.
  • 4ABDESSAMEUD A, TAYEBI A. Attitude synchronization of a group of spacecraft without velocity measurements[J]. IEEE Trans. Automat Control, 2009, 54(11): 2642-2648.
  • 5FAX J A, MURRAY R M. Information flow and cooperative control of vehicle formations[J]. IEEE Trans Automat Control, 2004, 49(9): 1465-1476.
  • 6JADBABAIE A, LIN J, MORSE A S. Coordination of groups of mobile autonomous agents using nearest neighbor rules[J]. IEEE Trans Automat Control, 2003, 48(6): 988-1001.
  • 7OLFATI-SABER R, MURRAY R M. Consensus problems in networks of agents with switching topology and time-delays[J]. IEEE Trans Automat Control, 2004, 49(9): 1520-1533.
  • 8REN W. Consensus seeking, formation keeping, and trajectory tracking in multiple vehicle cooperative control[D]. Brigham: Brigham Young University, 2004.
  • 9BLIMAN P A, FERRARI-TRECATE G. Average consensus problems in networks of agents with delayed communications[J]. Automatica, 2008, 44(8): 1985-1995.
  • 10TIAN Y P, LIU C L. Consensus of multi-agent systems with diverse input and communication delays[J]. IEEE Trans Automat Control, 2008,53(9):2122-2128.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部