期刊文献+

低温胁迫对西花蓟马抗氧化酶活性的影响 被引量:11

Effect of low temperature stress on antioxidase activity of western flower thrips,Frankliniella occidentalis
原文传递
导出
摘要 西花蓟马Frankliniella occidentalis(Pergande)是一种重要入侵害虫。温度是影响西花蓟马生长发育和繁殖的一个重要非生物因子,西花蓟马对温度的耐受性决定了它的越冬存活率和地理分布。本文研究了4种抗氧化酶在低温胁迫下的活力变化。结果表明,4种抗氧化酶对低温胁迫具有不同的响应模式。低温处理能显著提高SOD的活力,对POD的活力则具有明显的抑制作用;然而,CAT和GST的活力在低温胁迫处理表现为先降低,随后逐渐提高的趋势。本研究结果表明4种抗氧化酶在西花蓟马应对低温胁迫中具有重要作用。 The western flower thrip (WFT) , Frankliniella occidentalis (Pergande) is a key invasive insect. Temperature is one of the most important abiotic factors affecting the winter survival rate and geographical distribution of WFT. We studied the activities of four antioxidant enzymes under low temperature stress. We found that these four antioxidant enzymes exhibited different responses in relation to low temperature stress. Low temperature can significantly improve the activity of SOD, but suppress the activity of POD. However, the activities of CAT and GST first decreased, then increased, in response to low temperature. Our results thus indicate that these four antioxidases may play an important role in WFT' s response to low temperature stress.
出处 《应用昆虫学报》 CAS CSCD 北大核心 2013年第4期1062-1067,共6页 Chinese Journal of Applied Entomology
基金 公益性行业(农业)科研专项(201103026 200803025)
关键词 西花蓟马 抗氧化酶 低温胁迫 Frankliniella occidentalis, antioxidant enzymes, low temperature stress
作者简介 通讯作者,E-mail:yzdu@yzu.edu.cn
  • 相关文献

参考文献26

  • 1Ahmad S, Pardini RS, 2008. Antioxidant defense of the cabbage looper. Trichoplusiani : enzymatic responses to the superoxide-generating flavonoid, quercetin, and photodynamic furanocoumarin, xanthotoxin. Photochem. Photobiol. , 51 ( 3) : 305 - 311.
  • 2Claravon-Mathews M, Summers CB, Felton GW, 1997. Ascorbate peroxidase: a novel antioxidant enzyme in insects. Arch. Insect Biochem. Physiol. ,34(1) :57 -68.
  • 3Dubovskii 1M, Grizanova EV, Chertkova EA, 2010. Generation of reactive oxygen species and activity of antioxidants in hemolymph of the moth larvae Galleria mellonella (L.) (Iepidoptera: Piralidae ) at development of the process of encapsulation. J. Evol. Biochem. Phys. , 46 (1) :35 -43.
  • 4Habig WH, Pabst MJ, Jakoby WB, 1974. Glutathione S?transferase. J. Biol. Chem., 249:7130 -7139.
  • 5Jia FX, Dou W, Hu F, Wang JJ, 2011. Effects of thermal stress on lipid peroxidation and antioxidant enzyme activities of oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae). Fla. Entomol. , 94 ( 4) : 956 - 963.
  • 6Kashiwagi A, Kashiwagi K, Takase M, Hanada H, Nakamura M, 1997. Comparison of catalase in diploid and haploid Rana rugosa using heat and chemical inactivation techniques. Compo Biochem. Physiol. B, 118 :499 - 503.
  • 7Kirk WDJ, Terry LI, 2003. The spread of the western flower thrips Frankliniella occidentalis (Pergande). Agr. Forest Entomol. , 5(4) :301 -310.
  • 8Kono Y, Shishido T, 1992. Distribution of glutathione S?transferase activity in insect tissues. Appl. Entomol. Zool. , 27 :391 - 397.
  • 9Li D, Blasevich F, Theopold U, Schmidt O, 2003. Possible function of two insect phospholipid-hydroperoxide glutathione peroxidases. J. Insect. Physiol. , 49 ( 1 ) : 1 - 9.
  • 10Li HB, Shi L, Lu MX, Wang JJ, Du YZ, 2011. Thermal tolerance of Frankliniella occidentalis : Effects of temperature, exposure time, and gender. J. Therm. Biol, , 36(7) :437 -442.

二级参考文献73

共引文献389

同被引文献196

引证文献11

二级引证文献117

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部