期刊文献+

短纤维与球状颗粒双相夹杂增强陶瓷基复合材料有效力学性能分析的广义Mori-Tanaka法 被引量:5

General Mori-Tanaka Method for the Analysis of Effective Mechanical Properties of Ceramic Composites Reinforced with Short-fiber and Spherical Particle
原文传递
导出
摘要 结合Eshelby夹杂理论和Mori-Tanaka方法推导陶瓷基体中含两种以上不同形状和不同力学性质的夹杂情况下,复合材料的有效力学性能计算的广义Mori-Tanaka解析计算式,分析颗粒与短纤维夹杂对复合材料有效力学性能的影响,并用三维均质化法检验所得解析式的可靠性。结果表明,解析模型与均质化法得到的结果非常吻合,不同形状的夹杂对有效力学性能的影响很大,短纤维增强相能够有效改善复合材料沿短纤维方向的纵向有效力学性能,对提高多相混合增强陶瓷基复合材料的刚度和强度起主要作用;球状颗粒增强相能有效改善复合材料的横向有效力学性能,并保持复合材料强度的稳定性,不同形状的夹杂能够综合改善陶瓷基复合材料的力学性能。 A theoretical formula(general Mori-Tanaka theory,GMT) combining the Eshelby's inclusion theory with Mori-Tanaka method was derived to analyze the effective mechanical properties of ceramic composites reinforced with short-fiber and spherical particle.The effect of short-fiber and spherical particle on the effective mechanical properties of composites was investigated,and the reliability of the results was verified by the three-dimensional homogenization method(HM),and a good agreement was shown for two methods.The results show that the shapes of inclusions have obvious effect on the effective mechanical properties of ceramic composites,and the short-fiber is prior to the spherical particle to obtain a high longitudinal effective elastic modulus,and to improve the stiffness and strength of multi-phase hybrid ceramic composites.The spherical particle is effective to improve the transverse effective elastic modulus,and to keep the stability of the strength for ceramic composites.The hybrids of inclusions with different shapes are beneficial to improve the effective mechanical properties of ceramic composites synthetically.
出处 《武汉理工大学学报》 CAS CSCD 北大核心 2013年第7期26-31,36,共7页 Journal of Wuhan University of Technology
基金 国家自然科学基金(11172066/A020305) 广东省自然科学基金(S2011010004874) 佛山市科技发展专项基金(FZ2010033) 长沙理工大学电力与交通材料保护省重点实验室开放基金(2012CL06)
关键词 短纤维与球状颗粒 双相夹杂 陶瓷基复合材料 广义Mori-Tanaka法 均质化法 short-fiber and spherical particle inclusions with two phases ceramic composites general Mori-Tanaka method homogenization method
作者简介 罗冬梅(1965-),女,博士,教授.E-mail:dongmei-1uo@126.com
  • 相关文献

参考文献13

  • 1张立同,成来飞.连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J].复合材料学报,2007,24(2):1-6. 被引量:218
  • 2Cho J,Joshi M S, Sun C T. Effect of Inclusion Size on Mechanical Properties of Polymeric Composites with Micro and Nano-particles[J]. Composites Science and Technology, 2006,66 : 1941-1952.
  • 3胡金山,朱文亮,杨虹,罗冬梅.纳微米双相颗粒增强陶瓷基复合材料力学性能的数值模拟[J].佛山科学技术学院学报(自然科学版),2010,28(3):37-43. 被引量:2
  • 4戴长虹,赵茹,孟永强.碳化硅纳米晶须的研究进展[J].中国陶瓷,2003,39(1):29-31. 被引量:14
  • 5王海龙,汪长安,张锐,黄勇,许红亮,卢红霞.纳米SiC晶须和SiC颗粒混合增韧ZrB_2陶瓷性能[J].复合材料学报,2009,26(4):95-101. 被引量:9
  • 6Andrei A Gusev. Numerical Identification of the Potential of Whisker- and Platelet-filled Polymers[J]. Macromolecules, 2001,34: 3081-3093.
  • 7Eshelby J D. The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems[J]. Proc Roy Soc,1957, A241 : 376-396.
  • 8Mori T,Tanaka K. Average Stress in Matrix and Average Elastic Energy of Materials with Misfitting Inclusions[J]. Ac- ta Metall, 1973,21 : 571-574.
  • 9Aboudi J. Micro-mechanical Analysis of Composites by the Method of Cells[J]. Appl Mech Rev, 1996,49(10) :S83-S91.
  • 10Hassani B, Hinton E. A Review of Homogenization and Topology Optimization I- Analytical and Numerical Solution of Homogenization Equations[J]. Computers & Structures, 1998,69 : 719-738.

二级参考文献64

共引文献251

同被引文献26

  • 1陈浩然,苏晓风,郑长良.考虑损伤界面的多相复合材料总体平均力学性能的预测[J].计算结构力学及其应用,1995,12(1):39-46. 被引量:3
  • 2叶碧泉,羿旭明,靳胜勇,梁芝茹.用界面单元法分析复合材料界面力学性能[J].应用数学和力学,1996,17(4):343-348. 被引量:17
  • 3叶平,沈剑平,王光耀,吴剑.汽车轻量化用高强度钢现状及其发展趋势[J].机械工程材料,2006,30(3):4-7. 被引量:95
  • 4An Jeong-wook, Lim Dae-soon. Effect of Carbon Nanotube Additions on the Microstructure of Hot-pressed Alumina[J]. Journal of Ceramic Processing Research, 2003,3 (3): 201-204.
  • 5Kawai T,Kawabata Y,Kumagai K,et al. A New Discrete Model for Analysis of Solid Mechanics Problems[J]. Numeri cal Methods in Fracture Mechanics, 1978: 26-37.
  • 6Walter M E, Ravichandran G, Ortiz M. Computational Modeling of Damage Evolution in Unidirectional Fiber Reinforced Ceramic Matrix Composites[J]. Comput Mech, 1997,20(1/2) :192-198.
  • 7Barenblatt G I. The Formation of Equilibrium Cracks During Brittle Fracture. General Ideas and Hypotheses Axially Symmetric Cracks[J]. Applied Mathematics and Mechanics,1959,23(3):622-636.
  • 8Dugdale D S. Yielding of Steel Sheets Containing Slits[J]. Journal of Mechanics of Physics and Solids, 1960,8 (2) : 100- 104.
  • 9Xu X P, Needleman A. Numerical Simulations of Fast Crack Growth in Brittle Solids[J]. Journal of the Mechanics and Physics of Solids, 1994,42 : 1397-1434.
  • 10Camanho P P, Davila C G. Mixed-mode Decohesion Finite Elements for the Simulation of Delamination in Composite Ma- terials[J]. NASA-Technical Paper, 2002,211737(1): 33.

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部