期刊文献+

效应代数中的正则元和正规元(英文) 被引量:1

Regular elements and normal elements in effect algebras
在线阅读 下载PDF
导出
摘要 在效应代数中引入了正则元和正规元的概念并研究了它们的性质.首先证明了C(E)N(E)P(E),C(E)N(E)S(E),其中N(E)是效应代数E的所有正规元组成的集合,R(E)是所有正则元组成的集合.其次证明了R(E)和N(E)是E的正规子效应代数,且N(E)是正交模偏序集.此外还证明了若E是格序效应代数,则R(E)和N(E)都是E的子格,且N(E)是正交模格. In the paper, the concepts of regular elements and normal elements in effect algebras are introduced, and some properties of them are studied. Firstly, it is shown that C(E)∈N (E)∈P(E) and C(E)∈N(E)∈S(E), in which N(E) is the set of all normal elements in an effect algebra E and R(E) is the set of all regular elements in an effect algebra E. Secondly, it is proved that R(E),N(E) are all normal sub-effect algebras of E, N(E) is an orthomodular poset. Moreover, if E is a lattice effect algebra, then it is proved that R(E) ,N(E) are all full sub-lattices of E and N(E) is an orthomodular lattice.
作者 李海洋
出处 《纺织高校基础科学学报》 CAS 2013年第2期143-148,共6页 Basic Sciences Journal of Textile Universities
基金 Supported by the National Natural Science Foundation of China(11271297) the Foundation of Shaanxi Province(12JK853)
关键词 效应代数 WELL Inside关系 正则元 正规元 正交模格 effect algebras well inside relation regular elements normal elements orthomod-ular lattices
作者简介 Biogrophy: LI Hai-yang (1975- ), male, a native of Fuping county, Shaanxi province, associate professor of Xi' an Polytechnic University. E-mail: Iplihaiyang@ 126. com
  • 相关文献

参考文献1

二级参考文献12

  • 1Foulis D J, Bennett M K.Effect algebra and un sharp quantum logicsj Jj.Found Phys, 1994,24: 1331-1352.
  • 2Kopka F, Chovanec F.D-posets[J].Mathematical Siovaca, 1994, 44:21-34.
  • 3Jenca G, Riecanova Z.On sharp elements in lattice ordered effect algebras[J].BUSEFAL,1999,80:24-49.
  • 4Greechie R, Foulis D, Pulmannova S.The center of an effect algebra[J].Order, 1995,12: 91-106.
  • 5Gudder S.S-dominating effect algebras[J].International Journal of Theoretical Physics, 1998,37: 915-923.
  • 6Riecanova Z.Continuous lattice effect algebras admitting order?continuous states[J].Fuzzy Sets and Syetems, 2003,136 :41-54.
  • 7Riecanova Z.Sharp elements in effect algebras[J].International Journal of Theoretical Physics,2001,40:913-920.
  • 8Riecanova Z.Subalgebras, intervals and central elements of generalized effect algebra[J].International Journal of Theoret?ical Physics, 1999,38: 3209-3220.
  • 9Dvurecenskij A, Pulmannova S.N ew trends in quantum struc?tures[M].Kluwer: Dordrecht Academic Publishers, 2000.
  • 10Avallone A, Vitolo P.Congruences and ideals of effect alge?bras[J].Order, 2003, 20( I) : 67-77.

共引文献3

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部