期刊文献+

椭圆轨道非线性相对运动模型的周期解与应用 被引量:5

Periodic Solution to Elliptical Orbit Nonlinear Relative Motion Model and the Application
在线阅读 下载PDF
导出
摘要 在长期的航天器编队飞行中传统的基于线性相对运动模型设计编队保持轨道的方法会引起较多的燃料消耗。首先采用摄动法解析地求得了考虑二阶非线性项时椭圆轨道相对运动模型的周期性条件和周期解;然后以此周期解为参考轨道设计了基于Lyapunov稳定的PD保持控制律。仿真结果表明:基于椭圆轨道非线性相对运动模型的周期解较基于椭圆轨道线性相对运动模型的周期解,精度明显提高;以前者为参考轨道的保持控制与以后者为参考轨道的保持控制相比,燃耗明显降低。 Traditional formation keeping orbit design is based on linear relative motion model which will lead to more fuel consumption during long-term spacecraft formation flying. Firstly, the periodic condition and periodic solution were obtained by solving the elliptical orbit relative motion model considering the second-order nonlinear terms with perturbation approach. The periodic solution obtained was then used as the reference orbit of a PD control law for formation keeping based on the Lyapunov stability theory. Simulation results show that the periodic solution based on the nonlinear relative motion model of elliptical orbit is more accurate than that based on linear relative motion model of elliptical orbit. And the formation maintain control law with periodic reference orbit based on nonlinear model can save much more fuel compared with that based on the linear model.
出处 《中国空间科学技术》 EI CSCD 北大核心 2013年第3期37-45,共9页 Chinese Space Science and Technology
基金 国家自然科学基金(11072194) 航天飞行动力学技术重点实验室开放基金(2012afdl021)资助项目
关键词 摄动法 周期解 非线性相对运动模型 椭圆轨道 编队飞行 保持控制 航天器 Perturbation approach Periodic solution Nonlinear relative motion modelElliptical orbit Formation flying Maintain control Spacecraft
作者简介 曹静1986年生,2008年毕业于西北工业大学飞行器设计专业,现为西北工业大学飞行器设计专业博士研究生。研究方向为航天器相对运动动力学与控制。
  • 相关文献

参考文献10

  • 1VADDI SESHA S, VADALI SRINIVAS R, ALFRIEND KYLE T. Formation flying., accommodating nonlinearity and eccentricity perturbations [J]. Journal of Guidance, Control, and Dynamics, 2003, 26(2): 214-223.
  • 2SENGUPTA PRASENJIT, SHARMA RAJNISH, VADALI SRINIVAS R. Periodic relative motion near a Keplerian elliptic orbit with nonlinear differential gravity [J]. Journal of Guidance, Control, and Dynamics, 2006, 29(5).. 1110-1121.
  • 3VADALI SRINIVAS R, SENGUPTA PRASENJIT, YAN HUI, et al. Fundamental frequencies of satellite relative motion and control of formations [J] Journal of Guidance, Control, and Dynamics, 2008, 31(5).. 1239-1248.
  • 4INALHAN GOKHAN, TILLERSON MICHAEL, HOW JONATHAN P. Relative dynamics and control of spacecraft formations in eccentric orbits [J]. Journal of Guidance, Control, and Dynamics, 2002, 25(1):48-59.
  • 5GURFIL PINI. Relative motion between elliptic orbits~ generalized boundedness conditions and optimal formationkeeping [J]. Journal of Guidance, Control and Dynamics, 2005, 28(4): 761-767.
  • 6SCHAUB HANSPETER, ALFRIEND KYLE T. J2 invariant relative orbits for spacecraft formations [J]. Celestial Mechanics and Dynamical Astronomy, 2001, 79(2): 77-95.
  • 7SABATINI M, IZZO D, BEVILACQUA R. Special inclinations allowing minimal drift orbits for formation flying satellites [J]. Journal of Guidance, Control, and Dynamics, 2008, 31(1): 94-100.
  • 8BIGGS J D, BECERRA V M, NASUTO S J, et al. A search for invariant relative satellite motion [EB/OL]. [2005]. http: //www. esa. int/gsp/ACT/doc/ARI/ARI% 20Study~ 20Report/ACT-RPT- MAD-ARI-04-4104 b-InvariantMotion-Reading, pdf.
  • 9YAMANAKA KOJI, ANKERSEN FINN. New state transition matrix for relative motion on an arbitrary elliptical orbit [J]. Journal of Guidance, Control, and Dynamics, 2002, 25(1): 60-66.
  • 10CARTER THOMAS E. State Transition matrices for terminal rendezvous studies~ brief survey and new example [J]. Journal of Guidance, Control, and Dynamics, 1998, 21(1): 148-155.

同被引文献143

引证文献5

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部