期刊文献+

湍流燃烧的动态自适应直接数值模拟 被引量:1

Direct Numerical Simulation of Turbulent Combustion with Dynamic Adaptive Mesh Technology
在线阅读 下载PDF
导出
摘要 为了能以较低的计算成本分辨多尺度的湍流燃烧过程,发展了基于动态自适应网格技术的湍流燃烧直接数值模拟方法。在氢气/空气层流预混火焰传播的模拟中,准确计算出了火焰传播速度,表明该方法具有直接求解火焰以及精确捕捉火焰传播过程的能力。在衰减的各向同性均匀湍流的模拟中,借助FFT分析获得了合理的湍动能谱线随湍动能衰减的变化规律,表明该方法能够直接求解湍流。由于在实际应用中,点火发生的位置与低温机理的速率相关,因此在氢气/空气湍流预混火焰中研究了湍流对低温机理的影响,发现湍流输运以及湍流涡团间强烈的拉伸和剪切对低温机理有明显的加速作用,能显著增强放热。 Abstract:In order to resolve multiscale processes in turbulent combustion with acceptable computa tional expenditure, a method for directly simulating the turbulent combustion was developed based on a dy namic adaptive mesh technology. The flame propagation velocity of a hydrogen/air laminar premixed flame can be simulated precisely by this method, showing that this method is capable of directly resolving the flame and its propagation. A reasonable variation of the energy spectrum with the decay of the turbulent ki netic energy in an isotropic homogeneous turbulence can also be simulated and it indicates the capacity of this method for directly resolving the turbulence. As the location where the ignition occurs in practical appli cation is related to the rate of the low temperature chemistry, a numerical simulation is conducted to study the effects of the turbulence on the low temperature chemistry in a hydrogen/air turbulent premixed flame. It is found that the turbulent transport and the stretching and shearing effects between turbulent eddies can ac celerate the low temperature chemistry significantly and thus intensify the heat release.
作者 单繁立 朴英
出处 《推进技术》 EI CAS CSCD 北大核心 2013年第6期786-794,共9页 Journal of Propulsion Technology
关键词 湍流燃烧 低温机理 直接数值模拟 动态自适应 Turbulent combustion Low temperature chemistry Direct numerical simulation Dynamic adaption
作者简介 单繁立(1983-),男,博士生,研究领域为航空宇航推进系统、湍流燃烧。E—mail:cfl02@mails.tsinghua.edu.cn
  • 相关文献

参考文献20

  • 1杨武兵.湍流非预混燃烧简化的PDF模型的大涡模拟研究 [D].北京:清华大学, 2006.
  • 2El-Asrag H.Large Eddy Simulation Subgrid Model for Soot Prediction [D].Atlanta:Georgia Institute of Technology, 2007.
  • 3Yoo C S, Lu T, Chen J H, et al.Direct Numerical Simulations of Ignition of a Lean n-Heptane/Air Mixture with Temperature Inhomogeneities at Constant Volume:Parametric Study [J].Combustion and Flame, 2011,8:1727-1741.
  • 4Sreedhara S, Lakshmisha K N.Direct Numerical Simulation of Autoignition in a Non-Premixed, Turbulent Medium [J].Proceedings of the Combustion Institute, 2000,(28):25-34.
  • 5Chen J H.Petascale Direct Numerical Simulation of Turbulent Combustion—Fundamental Insights Towards Predictive Models [J].Proceedings of the Combustion Institute, 2011,(33):99-123.
  • 6Peters N.Multiscale Combustion and Turbulence [J].Proceedings of the Combustion Institute, 2009,(32):1-25.
  • 7Liu S, Hewson J, Chen J H, et al.Effects of Strain Rate on High-Pressure Nonpremixed n-Heptane Autoignition in Counterflow [J].Combustion and Flame, 2004,7:320-339.
  • 8Toro E F.Riemann Solvers and Numerical Methods for Fluid Dynamics [M].Berlin:Springer, 1999.
  • 9Barth T J, Jespersen D.The Design and Application of Upwind Schemes on Unstructured Meshes [R].AIAA 89-0366.
  • 10Williamson J H.Low-Storage Runge-Kutta Schemes [J].Journal of Computational Physics, 1980,(35):48-56.

同被引文献21

  • 1Yoo C S, Lu T, Chen J H, et al. Direct Numerical Simu- lations of Ignition of a Lean n-Heptane/Air Mixture with Temperature Inhomogeneities at Constant Volume: Para- metric Study [ J ]. Combustion and Flame, 20ll, 158 : 1727-1741.
  • 2Chen J H. Petascale Direct Numerical Simulation of Tur- bulent Combustion-Fundamental Insights Towards Pre- dictive Models [ J]. Proceedings of the Combustion Insti- tute, 2011, 33: 99-123.
  • 3Chakravarthy V, Menon S. Subgrid Modeling of Premixed Flames in the Flamelet Regime [ J ]. Flow, Turbulence and Combustion, 2000, 65: 23-45.
  • 4EI-Asrag H, Menon S. Large Eddy Simulation of Bluff- Body Stabilized Swirling Non-Premixed Flames [ J]. Pro- ceedings of the Combustion Institute, 2007, 31 : 1747- 1754.
  • 5Duan L. DNS of Hypersonic Turbulent Boundary Layers [ D]. Princeton: Princeton University, 2011.
  • 6Duan L, Feldick A M, Martin M P, et al. Study of Tur- bulence-Radiation Interaction in Hypersonic Turbulent Boundary Layers [R]. AIAA 2011-749.
  • 7Kim W, Menon S. An Unsteady Incompressible Navier- Stokes Solver for Large Eddy Simulation of Turbulent Flows [ J]. International Journal for Numerical Methods in Fluids, 1999, 31: 983-1017.
  • 8E1-Asrag H. Large Eddy Simulation Subgrid Model for Soot Prediction [ D ]. Atlanta: Georgia Institute of Tech- nology, 2007.
  • 9Liu S, Meneveau C, Katz J. On the Properties of Similar- ity Subgrid-Scale Models as Deduced from Measurements in a Turbulent Jet [ J ]. Journal of Fluid Mechanics,1!994, 275 : 83-119.
  • 10Lilly D K. A Proposed Modification of the Germano Sub- grid-Scale Closure Method [ J ]. Physics of Fluids, 1992, 4 (3): 633-635.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部