期刊文献+

Traveling Waves for 2-1 Dimension Lattice Difference Equations 被引量:1

Traveling Waves for 2-1 Dimension Lattice Difference Equations
在线阅读 下载PDF
导出
摘要 A definition is introduced about traveling waves of 2-1 dimension lattice difference equations. Discrete heat equation is introduced and a discussion is given for the existence of traveling waves. The theory of traveling waves is extended on 2-1 dimension lattice difference equations. As an application, an example is presented to illustrate the main results. A definition is introduced about traveling waves of 2-1 dimension lattice difference equations. Discrete heat equation is introduced and a discussion is given for the existence of traveling waves. The theory of traveling waves is extended on 2-1 dimension lattice difference equations. As an application, an example is presented to illustrate the main results. Key. words: traveling waves; lattice difference equations; discrete heat equation
出处 《Chinese Quarterly Journal of Mathematics》 CSCD 2013年第2期214-223,共10页 数学季刊(英文版)
基金 Supported by the National Natural Science Foundation of China(Ill61049)
关键词 traveling waves lattice difference equations discrete heat equation traveling waves lattice difference equations discrete heat equation
作者简介 HOU Cheng-min(1963-), female, native of Yanji, Jilin, a professor of Yanbian University, M.S.D engages in discrete dynamics system.
  • 相关文献

参考文献16

  • 1CHOW S N. Lattice Dynamical Systems, in: Dynamical Systems, Lecture Notes in Mathematics[M]. Berlin: Springer,2003: 1-102:.
  • 2MALLER P J. Traveling Waves in Spatially Discrete Dynamical Systems of Diffusive Type, in: Dynamical Systems, Lecture Notes in Mathematics[M]. Berlin: Springer, 2003: 231-298.
  • 3WAZWAZ A M, MONA S, MEHANNA. A variety of exact traveling wave solutions for the (2+ I)-dimensional Boiti-Leon-Pempinelli equation[J]. Applied Mathematics and Computation, 2010, 217: 1484"1490.
  • 4DAI Chao-qing, CEN Xu, WU Sheng-sheng. Exact traveling wave solutions of the discrete sine Gordon equation obtained via the exp-function methodj.I], Nonlinear Analysis, 2009, 70: 58-63.
  • 5HUANG .Iian-hua, LU Gang, RUAN Shi-gui. Traveling wave solutions in delayed lattice differential equa?tions with partial monotonicity[J]. Nonlinear Analysis, 2005, 60: 1331-1350.
  • 6CHOW S N, MALLET J P, SHEN W. Traveling waves in lattice dynamical systems[J]. J Differential Equations, 1998, 149: 248-29l.
  • 7MALLET J P. The global structure of traveling .waves in spatially discrete dynamical systems[J]. Journal of Dynamics and Differential Equations, 1999, 11(1): 49-127.
  • 8AFTRAIMOVICH V, PESIN Y. Traveling waves in lattice models of multi-dimensional and multi-component media[J]. I General Hyperbolic Properties, Nonlinearity, 1993,6(3): 429-455.
  • 9ALEXANDER J C, AUCHMUTY G. Bifurcation analysis of reaction-diffusion equations VI multiply peri?odic traveling waves[J]. SIAM J Math Anal, 1988, 19(1): 100-109.
  • 10BRITTON N F. Spatial structures 'and periodic traveling waves in an integro-differential reaction diffusion population model[J]. SIAM J Appl Math, 1990, 50(6): 1663-1688.

同被引文献7

  • 1Bell J,Cosner C.Threshold behavior and propagation for nonlinear differential-difference systems motivated by modeling myelinated axons[J].Quart Appl Math,1984,42:1-14.
  • 2Britton N F.Traveling wave front solutions of a differential-difference equation arising in the modeling of myelinated nerve axon[J].Ordinary and Partial Differential Equations,Lecture Notes in Mathematics,2006,1151(1985):77-89.
  • 3Chi H,Bell J,Hassard B.Numerical solutions of a nonlinear advanced-delay differential equation from nerve condition theory[J].J Math Biol,1986,24:583-601.
  • 4Shao Yuanhuang,Sui Suncheng.Existence of periodic traveling wave solutions of non-autonomous reaction-diffusion equations with lambda-omega type[J].J Math Anal Appl,2014,409:607-613.
  • 5Zinner B.Existence of traveling wavefront solutions for the discrete Nagumo equation[J].J Differ Eq,1992,96:1-27.
  • 6Fu S C,Guo J S,Shieh S Y.Traveling wave solutions for some discrete quasilinear parabolic equations[J].Nonlinear Anal,2002,48:1137-1149.
  • 7Wu J,Zou X.Asymptotic and periodic boundary value problems of mixed FDEs and wave solutions of lattice differential equations[J].J Differ Eq,1997,135:315-357.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部