期刊文献+

Gd0.2Ce0.8O2包覆LaNi0.6Fe0.4O3-δ阴极制备及性能

Fabrication and Performance of LaNi_(0.6)Fe_(0.4)O_(3-δ) Cathode Modified by Coating with Gd_(0.2)Ce_(0.8)O_2 for Intermediate Temperature Solid Oxide Fuel Cell
在线阅读 下载PDF
导出
摘要 应用丝网印刷和共烧结制备LaNi0.6Fe0.4O3-δ/Sc0.1Zr0.9O1.95/LaNi0.6Fe0.4O3-δ对称电池.以硝酸铈和硝酸钆为原料,柠檬酸作燃料,燃烧合成Gd0.2Ce0.8O2(GDC)包覆的LaNi0.6Fe0.4O3-δ(LNF)阴极.实验表明,在750oC工作温度下,纯LaNi0.6Fe0.4O3-δ阴极的极化电阻为0.70Ω.cm2,而21.3%(by mass,下同,如无特殊标注均为质量分数)GDC包覆的LNF-GDC复合阴极的极化电阻最小(0.13Ω.cm2),活化能最低(136.80 kJ.mol-1),故其阴极性能最佳.GDC的包覆加速了气体/阴极/电解质三相界面反应区的扩散过程,降低了阴极极化电阻. The symmetric cell of LaNi0.6Fe0.4O3-δ/Sc0.1Zr0.9O1.95/LaNi0.6Fe0.4O3-δ was fabricated with screen printing method.A LaNi0.6Fe0.4O3-δ(LNF) cathode was modified by coating with nano-sized gadolinium-doped ceria(GDC,Gd0.2Ce0.8O2) prepared using a simple combustion process within the pores of the cathode.According to the electrochemical impedance spectra(EIS),the polarization resistance of the pure LNF was 0.70 Ω.cm2at 750 °C,while 0.13 Ω.cm2for the 21.3%GDC(by mass)-coated LNF cathode at the same temperature,which was only 1/5 of that of the pure LNF cathode.The activation energy of the 21.3% GDC(by mass)-coated LNF cathode(136.80 kJ.mol-1) is the smallest among those of GDC-coated LNF cathodes with different contents of GDC.The 21.3% GDC(by mass)-coated LNF cathode showed the optimum performance.The results indicated that GDC coatings significantly affected electrocatalytic activity of the LNF cathodes towards O2 reduction reaction.The improved performance of GDC-coated LNF cathode was attributed to the extended triple-phase boundary(TPB) and enhanced ion conductivity of oxide.
出处 《电化学》 CAS CSCD 北大核心 2013年第3期275-280,共6页 Journal of Electrochemistry
基金 国家自然科学基金(No.51201098) 教育部高等学校博士学科点专项科研基金(No.20100073120055)资助
关键词 固体氧化物燃料电池 LaNi0 6Fe0 4O3-δ阴极 Gd0 2Ce0 8O2包覆 极化电阻 交流阻抗 solid oxide fuel cell LaNi0.6Fe0.4O3-δ cathode Gd0.2Ce0.8O2 coating polarization resistance electrochemical impedance spectroscopy
作者简介 通讯作者,Tel:(86—21)34206249.E-mail:huangb02k@hotmail.com
  • 相关文献

参考文献27

  • 1吕世权,龙国徽,孟祥伟,纪媛,王小敏,孙翠翠.钙钛矿型固体氧化物燃料电池阴极材料[J].电源技术,2010,34(7):734-737. 被引量:6
  • 2郭友斌,陆丽华,储凌,张华,金江.类钙钛矿IT-SOFC阴极材料研究进展[J].硅酸盐通报,2009,28(5):991-996. 被引量:11
  • 3邬理伟,郑颖平,孙岳明.固体氧化物燃料电池复合阴极研究进展[J].电池工业,2010,15(1):53-56. 被引量:2
  • 4Kadowaki T, Shiomitsu T, Marsuda E, et al. Applicability of heat resisting alloys to the separator of planar type solid oxide fuel cell[J]. Solid State Ionics, 1993, 67(1/2): 65-69.
  • 5Yang Z, Weil K S, Paxton D M, et al. Selection and evalu- ation of heat-resistant alloys for SOFC interconnect appli- cations[J]. Journal of the Electrochemical Society, 2003, 150(9): A1188-A1201.
  • 6Horita T, Xiong Y, Kishimoto H, et al. Application of Fe-Cr alloys to solid oxide fuel cells for cost-reduction: Oxidation behavior of alloys in methane fuel[J]. Journal of Power Sources, 2004, 131 (1/2): 293-298.
  • 7Tucker M C, Kurokawa H, Jacobson C P, et al. A funda- mental study of chromium deposition on solid oxide fuel cell cathode materials[J]. Journal of Power Sources, 2006, 160(1): 130-138.
  • 8Konysheva E, Penkalla H, Wessel E, et al. Chromium poisoning of perovskite cathodes by the ODS alloy Cr5FelY203 and the high chromium ferritic steel Cro- fer22APU[J]. Journal of the Electrochemical Society, 2006, 153(4): A765-A773.
  • 9Yokokawa H, Horita T, Sakai N, et al. Thermodynamic considerations on Cr poisoning in SOFC cathodes[J]. Sol- id State Ionics, 2006, 177(35/36): 3193-3198.
  • 10Liu D J, Almer J, Cruse T. Characterization of Cr poison- ing in a solid oxide fuel cell cathode using a high energy X-ray microbeam [J]. Journal of the Electrochemical So- ciety, 2010, 157(5): B744-B750.

二级参考文献92

  • 1黄端平,徐庆,陈文,张枫.新型中温固体氧化物燃料电池阴极材料的研究[J].陶瓷学报,2006,27(3):275-280. 被引量:9
  • 2Xia C R, Liu M L. Microstructures, conductivities, and electrochemical properties of Ce0.9 Gd0. 1 O2 and GDC-Ni anodes for low-temperature SOFCs[ J]. Solid State Ionics ,2002,152-153:423-430.
  • 3Nagata A, Okayama H. Characterization of solid oxide fuel cell device having a three-layer film structure grown by RF magnetron sputtering [ J ]. Vacuum,2002,66(3-4) :523-529.
  • 4Datta P, Majewski P, Aldinger F. Synthesis and characterization of strontium and magnesium substituted lanthanum gallate-nickel cermet anode for solid oxide fuel cells [ J ]. Materials Chemistry and Physics, 2007,102 ( 2 -3 ) : 125-131.
  • 5Patil B B , Pawar S H. Spray pyrolytic synthesis of samarium doped ceria (Ce0. s Sm0.2 O1.9 ) films for solid oxide fuel cell applications[ J ]. Applied Suorace Science,2007,253:4994-5002.
  • 6Nakayama S U, Sakamato M. Electrical properties of new type high oxide ionic conductor RElo Si6 O27 [ J ]. Journal of European Ceramic Society, 1998,18 : 1413-1418.
  • 7Zheng F, Pederson L R. Phase behavior of lanthanum strontium manganites [ J ]. J. Electrochem. Soc. , 1999,146:2810-2816.
  • 8Dusastre V, Kilner J A. Optimisation of composite cathodes for intermediate temperature SOFC applications [ J ]. Solid State Ionics, 1999,126 ( 1 - 2 ) : 163-174.
  • 9Jiang Y, Wang S Z ,Zhang Y H, et al. Electrochemical reduction of oxygen on a strontium doped lanthanum manganite electrode [J]. Solid State lonics, 1998,110 : 111 -119.
  • 10Bhavaraju B, Dicarlo J F, Scarfe D P. Electrochemical oxygen intercalation in La2 NiO4 +δ crystals [ J ]. Solid State lonics, 1996 , (86-88) :825-831.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部