期刊文献+

TV数值计算的图像去噪 被引量:9

Image Denoising on TV Numerical Computation
在线阅读 下载PDF
导出
摘要 继承传统TV去噪算法的图像边缘保护性,弥补平滑区域抑噪不充分的不足,结合图像的空间梯度和像素梯度,提出了新的基于TV数值计算的去噪算法。该算法分析了图像的空间梯度;为了抑制噪声对图像平滑区域梯度的影响,对该区域的空间梯度进行抑制,克服了传统TV算法对平坦区抑噪不充分,甚至出现的虚假边缘和阶梯效应;结合像素梯度分析了图像TV去噪的迭代函数。实验结果表明,该算法实现了保边去噪且残余噪声较小,提高了图像的峰值信噪比(PSNR)和视觉效果。 In order to inherit the traditional TV denoising algorithm of image edge protection, meanwhile, make up for inadequate noise suppression in the smooth area, this paper proposes a new denoising algorithm based on TV numerical calculation by using the spatial gradient and pixel gradient. An analysis is given to the spatial gradient of image, noise suppression of image smooth area, the inhibiting of spatial gradient in the region of interest and the iteration function of TV denoising based on pixel gradient. Experimental results show that the algorithm realizes edge-protection and less residual noise, and improves image peak signal to noise ratio and visual effects.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2013年第3期459-463,共5页 Journal of University of Electronic Science and Technology of China
基金 教育部留学回国人员启动基金(20091341-11-3)
关键词 各向异性 梯度抑制 图像去噪 像素梯度 空间梯度 anisotropic gradient suppress image denoising pixel gradient spatial gradient
作者简介 何坤(1972-).男.博士。副教授。主要从事图像处理,模式识别方面的研究.
  • 相关文献

参考文献19

  • 1AL-AMRI S S, KALYANKAR N V, KHAMITKAR S D. A comparative study of removal noise from remote sensing image[J]. International Journal of Computer Science Issues, 2010, 7(1): 32-36.
  • 2HAJIABOL M R. A self-governing fourth-order nonlinear diffusion filter for image noise removal[C]//IPSJ Transactions on Computer Vision and Applications. Japan: IPS, 2010: 94-103.
  • 3RUSSO F. New method for performance evaluation of grayscale image denoising filters[J]. IEEE Signal Processing Letters, 2010, 17(5): 417-420.
  • 4LUO Qiang, WANG Jun, LUO Li, et al. Research of image denoising based on edge preservation[C]//Intemational Symposium on Intelligent Information Technology Application Workshops. Shanghai: IEEE Press, 2008: 447- 450.
  • 5戴芳,薛建儒,郑南宁.嵌入固有模态函数的各向异性扩散方程用于图像降噪[J].电子与信息学报,2008,30(3):509-513. 被引量:8
  • 6STATE L, SARARU C, COCIANU C. New approaches in image compression and noise removal[C]// 2009 First International Conference on Advances in Satellite and Space Communications. Colmar: IEEE Press, 2009:96-101.
  • 7ABOSHOSHA A, HASSAN M, ASHOUR M, ctal. linage dcnoising based on spatial filters, an analytical study[C]// The 2009 International Conference on Computer Engineering and Systems. Cairo: IEEE Press, 2009:2452 250.
  • 8Ll Hong-juang, WU Ming-ni. linage noise reduction using wiener filtering with pscudo-invcrsc[J]Joumal of the International Measurement Confederation. 2010, 43(10): 1649-1655.
  • 9LI Lin, KONG Ling-fu. Image denoising base on non-local means with wiener filtering in wavelet domain[C]//2009 Fifth International Conference on Intelligent Information Hiding and Multimedia Signal Processing. Kyoto: IEEE Press, 2009: 471-474.
  • 10RAZIFAR P, ENGLER H, BLOMQUIST G Principal component analysis with pro-normalization improves the signal-to-noise ratio and image quality in posit'on emission tomography studios of amyloid deposits in Alzheimer's disease[J]. Physics in medicine and biology, 2009, 54(11): 359-365.

二级参考文献8

  • 1Buades A, Coll B, and Morel J M. A review of image denoising algorithms, with a new one. Multiscale Model. Simul., 2005, 4(2): 490-530.
  • 2Perona P and Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1990, 12(7): 629-639.
  • 3Catte F, Lions P, and Morel J. Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal., 1992, 29(1): 182-193.
  • 4Alvarez L, Lions P, and Morel J. Image Selective Smoothing and Edge Detection by Nonlinear Diffusion Ⅱ. SIAM J. Numer. Anal, 1992, 29(3): 845-866.
  • 5Luo H, Zhu L, and Ding H. Coupled anisotropic diffusion for image selective smoothing. Signal Processing, 2006, 86(7):1728-1736.
  • 6Huang N E, Shen Z, Long S R, Wu M C, and Shih H H, et al.. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R Soc. Lond. A, 1998, 454: 903-995.
  • 7林宙辰,石青云.一个能去噪和保持真实感的各向异性扩散方程[J].计算机学报,1999,22(11):1133-1137. 被引量:35
  • 8张元林,郑南宁,袁泽剑.一种改进的图像自适应非线性滤波方法[J].西安交通大学学报,2004,38(2):162-166. 被引量:13

共引文献7

同被引文献69

  • 1刘祝华,邹道文,邓承志,汪胜前.一种新的基于噪声点检测的脉冲噪声去噪算法[J].计算机工程与应用,2005,41(15):41-43. 被引量:5
  • 2吴亚东,张红英,吴斌.数字图像修复技术[M].北京:科学出版社,2010.
  • 3袁文成,杨德兴,陈超.图像混合噪声的一种组合滤波消除方法[J].微处理机,2007,28(4):78-80. 被引量:8
  • 4蒲亦非,王卫星.数字图像的分数阶微分掩模及其数值运算规则[J].自动化学报,2007,33(11):1128-1135. 被引量:71
  • 5QIN Chuan, WANG Shuo-zhong, ZHANG Xin- peng. Simultaneous inpainting for image structure and texture using anisotropie heat transfer model [J]. Multimedia Tools and Applications, 2012, 56(3) :469-483.
  • 6Chan R H, YANG Jun-feng, YUAN Xiao-ming. Alternating direction method for image inpainting in wavelet domains [J]. SIAM Journal on Imaging Sciences, 2011, 4(3) : 807-826.
  • 7LI Sheng-feng, WANG Ru-jing, XIE Jin, et al. Exemplar image inpainting by means of curvature- driven method [C] // Proceedings -- 2012 International Conference on Computer Science and Electronics Engineering, ICCSEE 2012. Piscataway: IEEE Computer Society, 2012:326-329.
  • 8Paul G, Cardinale J, Sbalzarini I F. Coupling image restoration and segmentation: A generalized linear model/Bregman perspective [J].International Journal of Computer Vision, 2013, 104(1) :69-93.
  • 9Chen Q, Montesinos P, Sun Q S, et al. Adaptive total variation denoising based on difference curvature[J]. Image and Vision Computing, 2010, 28(3): 298-306.
  • 10QIU Zhen, YANG Lei, LU Weiping. A new feature-preserving nonlinear anisotropie diffusion for denoising images containing blobs and ridges[J]. Pattern Recognition Letters, 2012, 33(3): 319-330.

引证文献9

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部