期刊文献+

混沌振子弱信号能量检测方法 被引量:2

Chaotic Oscillator Detection Method for Weak Signals
在线阅读 下载PDF
导出
摘要 提出了一种Duffing弱信号能量检测方法。通过能量算法对不同状态下Duffing振子的频率分布特性进行分析,得到了一种基于瞬时频率的Duffing振子状态判别方法,并进一步给出了相变判别阈值的设定准则,且对检测算法的抗噪性和实时性进行了分析。仿真实验表明,该方法的计算量和实时性比传统相变判别算法有明显的改善,可满足强噪声背景下微弱信号的快速检测要求。 A novel Duffing detection method based on energy separation algorithm is proposed. The frequency distribution characteristics of the Duffing system in different states are investi- gated and an identification method is obtained with the instantaneous frequency, then the selec- tion rule of identification threshold is given. The noise immunity and real-time property of the method are analyzed. Simulations show that the algorithm complexity and real-time perform- ance of the method are significantly improved and it can meet the needs of the weak signal de- tection under the strong noise background.
出处 《数据采集与处理》 CSCD 北大核心 2013年第3期352-357,共6页 Journal of Data Acquisition and Processing
基金 "泰山学者"建设工程专项经费资助项目
关键词 混沌检测 能量分离算法 判别阈值 实时性 chaotic detection energy separation algorithm identification threshold real-time performance
作者简介 孙文军(1987-),男,博士,研究方向:数字通信信号检测,E-mail:djresearch@126.com 芮国胜(1968-),男,教授,研究方向:信号分析与处理,小波分析与应用 张洋(1979-),男,讲师,研究方向:非线性滤波与弱信号检测技术 王林(1985-),男,博士,研究方向:数字通信信号检测。
  • 相关文献

参考文献7

二级参考文献48

共引文献120

同被引文献27

  • 1Fazel-Rezai R.Recent advances in brain-computer interface systems[M].Rijeka:InTech,2011.
  • 2Donchin E,Spencer K M,Wijesinghe R.The mental prosthesis:Assessing the speed of a P300-based brain-computer interface[J].IEEE T Rehabil Eng,2000,8(2):174-179.
  • 3Mak J N,Wolpaw J R.Clinical applications of braincomputer interfaces:Current state and future prospects[J].IEEE Reviews in Biomedical Engineering,2009,2:187-199.
  • 4Marquez-Chin C,Popovic M R,Sanin E,et al.Realtime two-dimensional asynchronous control of a computer cursor with a single subdural electrode[J].Journal of Spinal Cord Medicine,2012,35(5):382-391.
  • 5Kus R,Valbuena D,Zygierewicz J,et al.Asynchronous BCI based on motor imagery with automa ted calibration and neurofeedback training[J].IEEE T Neur Sys Reh,2012,20(6):823-835.
  • 6Panicker R C,Puthusserypady S,Sun Y.An asynchronous P300 BCI with SSVEP-based control state detection[J].IEEE T Bio-Med Eng,2011,58 (6):1781-1788.
  • 7Aloise F,Schettini F,Arico P,et al.P300-based brain-computer interface for environmental control:An asynchronous approach[J].J Neural Eng,2011,8(2):025025.
  • 8Zhang H H,Guan C T,Wang C C.Asynchronous P300-based brain-computer interfaces:A computational approach with statistical models[J].IEEE T Bio-Med Eng,2008,55(6):1754-1763.
  • 9Citi L,Poli R,Cinel C.Documenting,modelling and exploiting P300 amplitude changes due to variable target delays in Donchin's speller[J].J Neural Eng,2010,7(5):056006.
  • 10Lu J,Speier W,Hu X,et al.The effects of stimulus timing features on P300 speller performance[J].Clin Neurophysiol,2013,124(2):306-314.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部