期刊文献+

基于改进小生境演化算法的多峰函数优化算法 被引量:4

Multimodal Function Optimization Algorithm Based on Improved Niche Evolutionary Algorithm
在线阅读 下载PDF
导出
摘要 传统演化算法在求解复杂多峰函数优化问题时经常会出现早熟、收敛速度慢等问题,特别是对于有多个最优解的函数,往往只能找到个别的最优解。针对这些问题,提出了一种基于隔离机制与排挤机制相结合的小生境演化算法。利用隔离机制增强引导进化能力,利用排挤机制保证种群的多样性,同时,采用反序交叉算子进一步加强局部寻优能力。实验表明,使用该改进小生境演化算法求解函数优化问题能更有效地克服传统演化算法存在的收敛速度慢和容易陷入局部最优解等缺点。 When the traditional evolutionary algorithm was used to solve the optimization problems of multimodal functions,it was not easy to avoid the problems of premature and slow convergent speed,especially when it faced the functions those had many global optimal solutions,fewer of the global optimal solutions could be found.To be aimed at these problems,an improved niche evolutionary algorithm based on the combination of the isolation mechanism and the crowding mechanism was proposed.In this new algorithm,the isolation mechanism was used to guide the evolution direction,and the crowding mechanism was introduced to keep the diversity of population.Besides,a niche inver-over operator was adopted to further enhance the local optimization ability.The results show that the shortcomings of slow convergent speed and easy to fall to local optimization solutions could be overcome by using this improved niche evolutionary algorithm to solve multimodal function optimizations problems,compared with the traditional evolutionary algorithm.
出处 《系统仿真学报》 CAS CSCD 北大核心 2013年第6期1170-1175,共6页 Journal of System Simulation
基金 国家自然科学基金(70971043 60873114) 广东省科技攻关项目(2012A020602037) 江西省教育厅科学技术研究项目(GJJ12348 GJJ12368)
关键词 演化算法 函数优化 隔离机制 小生境 evolutionary algorithm function optimization isolation mechanism niche.
作者简介 李康顺(通信作者)(1962-),男,江西兴国人,教授,博士后,博导,研究方向为演化计算、图像视觉、演化硬件; 余锡伦(1987-),女,江西九江人,硕士生,研究方向为演化计算; 张文生(1966-),男,河南郑州人,研究员,博导,研究方向为机器学习理论与算法; 董文永(1973-),男,教授,博导,研究方向为演化计算。
  • 相关文献

参考文献11

二级参考文献62

共引文献159

同被引文献50

  • 1包晓敏,汪亚明.基于最小错误率贝叶斯决策的苹果图像分割[J].农业工程学报,2006,22(5):122-124. 被引量:19
  • 2申晓宁,胡维礼.一种多目标优化合作型协同进化算法[J].计算机仿真,2007,24(2):157-161. 被引量:3
  • 3胡珂.基于人工蜂群算法在无线传感网络覆盖优化策略中的应用研究[D].成都:电子科技大学,2012.
  • 4Holland J H. Adaptation in Natural and Artificial Systems[M]. Michigan, the University of Michigan Press, 1975.
  • 5Rahnamayan S, Tizhoosh H, Salama M. Opposition- based differential evolution[J]. IEEE Transactions on Evolutionary Computation, 2008, 12(1 ): 64- 79.
  • 6Brest J, Greiner S, Boskovic B. Self-adapting Control Parameters in Differential Evolution: A comparative study on numerical benchmark problems[J]. 2006, 10(6): 646-657.
  • 7Zhang J Q, Sanderson A C. JADE: Adaptive differential evolution with optional external archive[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(5): 945 -958.
  • 8A. K. De Jong. An analysis of the behavior of a class of genetic adaptive systems[D]. Ph.D Dissertation. University of Michigan, 1975.
  • 9Rudolph G. Convergence analysis of canonical genetic algorithms[J]. Neural Networks, IEEE Transactions on, 1994, 5(1): 96- 101.
  • 10Liao T,Stutzle T.Benchmark results for a simple hybrid algorithm on the CEC 2013 benchmark set for real-parameter optimization[C]//Evolutionary Computation(CEC),2013 IEEE Congress on IEEE,2013:1938-1944.

引证文献4

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部