期刊文献+

基于社会网络的语义Web服务协同

Semantic Web services collaboration based on social network
在线阅读 下载PDF
导出
摘要 服务协同是多个服务在服务组合中的协同合作,通过动态组合实现大粒度的服务任务。服务社会网络基于服务社交关系的构建与维护,更好地为服务协同提供支持。服务匹配是服务社会网络构建的重要基础。文章提出了一个新的语义Web服务相似度比较算法,同时引入了深度及局部密度对服务本体语义相似度的影响,从而实现了高效的服务匹配,并达到高效的服务协同。 Services collaboration is the cooperation among services in the process of services composition, and services could cooperate with each other dynamically via services collaboration. Service social network provides services collaboration with better support since it is constructed and maintained on the foundation of services social relationships. Service matching is an important basis of the services social network construction. In this paper, a new algorithm that is used to compare the similarity of semantic Web services is proposed. The algorithm introduces depth and local density into the calculation of semantic similarity of the service ontology, which greatly improves the efficiency of services matching and services collaboration.
作者 姜波 张晓筱
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第5期566-571,共6页 Journal of Hefei University of Technology:Natural Science
基金 浙江省自然科学基金资助项目(LQ12F02011)
关键词 服务协同 社会网络 服务匹配 语义WEB服务 本体 services collaboration social network service matching semantic Web service ontology
作者简介 姜波(1970-),女,浙江黄岩人,博士,浙江工商大学教授,硕士生导师
  • 相关文献

参考文献10

  • 1Maamar Z,Hacid H, Huhns M N. Why web services needsocial networks[J]. IEEE Computer Science, 2011,15(2):90-94.
  • 2杨放春,许广宇.Web服务组合研究与实现[D].北京:北京邮电大学,2009.
  • 3AAAI Spring Symposia at Stanford lUniversity. IntelligentWeb Services Meet Social Computing [ EB/OL]. [2012-03-26]. http;//vitvar. com/events/aaai-ssl2,2012.
  • 4柴雪霞,马学森,周雷,唐昊.基于SMDP模型的Web服务组合优化方法[J].合肥工业大学学报(自然科学版),2011,34(10):1496-1500. 被引量:4
  • 5Xie Xiaoqin, Du Bailing, Zhang Zhiqiang. Semantic servicecomposition based on social network [EB/OL]. [2008-04-21]. http://keg. cs. tsinghua. edu. cn/SWSM2008/short %20papers/submission_17. pdf.
  • 6Maaradji A’Hacid H, Daigremont J, et al. Towards a socialnetwork based approach for services composion[C]// Pro-ceedings of the 2010 IEEE International Conference onCommunications(ICCr2010),Cape Town,2010:1-5.
  • 7Maamar Z,Faci N, Badr Y,et al. Using social networkds forweb service discovery[J]. IEEE Computer Science,2011,15(4):48-55.
  • 8Liu Min, Shen Weiming, Yan Junwei. An weighted ontology-based semantic similarity algorithm for web service[J]. ExpertSystem with Application,2009,36( 10):12480-12490.
  • 9李毅,王浩,杨静.基于语义相似度的Web文档聚类算法[J].合肥工业大学学报(自然科学版),2009,32(12):1846-1850. 被引量:3
  • 10廉晨思,郑诚.基于综合本体相似度计算的WEB服务发现算法[J].计算机应用与软件,2011,28(2):87-89. 被引量:2

二级参考文献28

  • 1冯名正.Web服务组合研究综述[J].计算机应用与软件,2007,24(2):23-27. 被引量:21
  • 2Han J, Kim T, Choi I. Web document clustering by using automatic keyphrase extraction[C]//IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology-Workshops, 2007 : 56-- 59.
  • 3Farhat A, Isabelle J F, Douglas O' Shaughnessy. Clustering words for statistical language models based on contextual word similarity[J]. Proceedings of the Acoustics, Speeah, and Signal Processing, 1996 IEEE Internaional Conference, Vol 1. Atlanta, GA,USA, 1996:180 -183.
  • 4Hammouda K M, Kamel M S. Efficient phrase-based document indexing for Web document clustering [J]. IEEE Transactions on Knowledge and Data Ebgineering, 2004,16 (10) : 1279--1296.
  • 5Zhang D. Semantic, hierarchical, online clustering of Web search results[C]//Proceeding of the 6th Asia Pacific Web Conference. Hangzhou, China, 2004 : 69-- 78.
  • 6Chen Zheng, Ma Weiying, Ma Jinwen. Learning to cluster web search results[C]//Proceedings of the 27th Annual In- ternational ACM SIGIR Conference. Sheffield, South Yorkshire,UK, 2004:210 -217.
  • 7Zamir O, Etzioni O. Web document cluserting: a feasibility demonstration[C]//Proceeding of Austrilia ACM SIGIR on Research and Development in Information Retrieval. New York: ACM Press, 1998 : 46- 54.
  • 8Pandya A, Bhattacharyya P. Text similarity measurment using concept representation of texts [C]//Proeeedings of First International Conference on Pattern Recognition and Machine Intelligence. Berlin: Springer, 2005 :678-689.
  • 9Song Jiangchun, Shen Junyi. A Web document clustering algorithm based on concept of neighbor[C]//Proceedings of the Second International Conference on Machine Learning and Cybernetics, 2003 : 46--47.
  • 10Liu Qun, Li Sujian. Word similarity computing based on How net[J]. Computational Linguistics and Chinese Language Processing,2002,17(2) :59-76.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部