期刊文献+

基于分层自适应部分模型的遥感图像飞机目标检测 被引量:4

Object Detecting of Aeroplan Based on Hierarchical Adaptive Part-based Model
原文传递
导出
摘要 提出一种基于分层自适应部分模型(HAPM,hierarchical adaptive part-based model)的目标检测方法,用于遥感图像的飞机目标检测。针对目前目标检测方法在子类型数目确定、模型多分辨率结构关系方面存在的不足,构造如下算法:首先构建一个扩展的Part-based Model模型;其次,分别从子类型的自适应选择、子类型的多层次建模和检测阶段加权距离变换的形变优化等方面对其进行改进;最后,HAPM算法充分考虑了模型的形变,同时结合多层次的建模思想使得目标的检测精度和算法适用性大大增强。用收集的10大国际机场的真实遥感图像数据进行实验验证,证明了算法的有效性。 A remote sensing image object detecting of aeroplane based on hierarchical adaptive part-based model is proposed. Because the present approaches take less of consideration on subtype choice and multi-resolution structure relationships, a new algorithm was put for- ward. First, an extern part-based model is built up. Then, we optimize its effects from sub- type adaptive choice, subtype hierarchical modeling and weighted distance transform. Final- ly, HAPM takes model deformation and together with hierarchical structure, which greatly improve the detection result and its application. By collecting the remote sensing images from ten airports, the effects of the new algorithm also has been tested. In a consequence, the results show that the new approach is worthwhile.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2013年第6期656-660,共5页 Geomatics and Information Science of Wuhan University
基金 国家973计划资助项目(2013CB733404) 国家自然科学基金资助项目(60702041 41021061 41174120) 中国博士后科学基金资助项目 湖北省自然科学基金资助项目
关键词 层次自适应 多层结构 LSVM 目标检测 HAPM (hierarchical adaptive part-based model) latent hierarchical structurelatent support vector machine(LSVM) object detection
作者简介 何楚,博士,副教授,现主要从事图像分析与理解、SAR图像解译等方面的研究。E—mail:chuhe@whu.edu.cn
  • 相关文献

参考文献11

  • 1Papageorgiou C, Poggio T. A Trainable System for Object Detection[J]. Int Journal of Computer Vi- sion, 2000, 38(1): 15-33.
  • 2Lowe D G. Distinctive Image Features from Scale- invariant Key-points[J]. Int Journal of Computer Vision, 2004, 60(2): 91-110.
  • 3Dalal N, Triggs B. Histograms of Oriented Gradi- ents for Human Detection[C]. IEEE Conf Comput- er Vision and Pattern Recognition, 1NRIA Rhone- Alps, Montbonnot, France, 2005.
  • 4Felzenswalb P F, Grishick R B, McAllister D, et al. Object Detection with Diseriminatively Trained Part-based Models[J]. PAMI, 2010, 32(9):1 627- 1 645.
  • 5Viola P A, Jones M J, Snow D. Detecting Pedestri- ans Using Patterns of Motion and Appearance[J]. Int Journal of Computer Vision, 2005, 63 (2) : 153- 161.
  • 6Walk S, Majer N, Schindler K, et al. New Fea- tures and Insights for Pedestrian Detection[C].IEEE Conf Computer Vision and Pattern Recogni- tion Tech Llniv Darmstadt, Darmstadt, Germany, 2010.
  • 7Hussain S, Triggs B. Feature Sets and Dimension- ality Reduction for Visual Object Detection [ C]. British Machine Vision Conf, 2010.
  • 8Dollar P, Wojek C, Schiele B, eta 1. Pedestrian Deetection: an Evaluation of the State of the Art [J]. PAMI, 2011, 34(4):743-761.
  • 9Zhu L, Chen Y, Yuille A, et al. Latent Hierarchi- cal Structural Learning for Object Detection [ C]. IEEE CVPR, Tech Univ Darmstadt, Darmstadt, Germany, 2010.
  • 10Felzenszwalb P F, McAllester D. Object Detection[M]. Grammars, 2010.

同被引文献50

  • 1李小文.汶川震灾中遥感的应急与反思[J].遥感学报,2008,12(6). 被引量:3
  • 2I.owe D G. Distinctive Image Features from Scale- invariant Key-points[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 3Dalal N ,Triggs B. Histograms of Oriented Gradi- ents for Human Deteetion[C]. IEEE Conf. Com- puter Vision and Pattern Reeognition, San Diego, CA, 2005.
  • 4Dalai N. Finding People in Images and Videos[D]. France: Institut Nat. Polyteehnique de Grenoble, 2006.
  • 5Walk S, Maer N, Sehindler K, et al. New Fea- tures and Insights for Pedestrian Detection [C].IEEE Conf. Computer Vision and Pattern Recogni- tion, San Francisco, USA, 2010.
  • 6Hussain S ,Triggs B. Feature Sets and Dimension- ality Reduction for Visual Object Det[C]. British Machine Vision Conf. , Aberystwyth, Wales, 2010.
  • 7Walk S, Majer N, Schindler K, et al. New Fea- tures Andinsights for Pedestrian Detection [C]. IEEE Conf. Computer Visionand Pattern Recogni- tion, San Francisco, USA, 2010.
  • 8Andrea V,Varun G,Manik V. Multiple Kernels for Object Detection[C]. ICCV, Kyoto, 2009.
  • 9Gehler P, Nowozin S. On Feature Combination for Muhiclass Object Classification[C]. ICCV, Kyoto, 2009.
  • 10Zhu Long(Leo), Chen Yuanhao, Yuille A, et al.Latent Hierarchical Structural Learning for Object Detection[C]. CVPR, San Francisco, USA, 2010.

引证文献4

二级引证文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部