期刊文献+

生灭分枝树连通分支的平均规模 被引量:1

Average Size of Connected Components in Birth-Death Branching Tree
在线阅读 下载PDF
导出
摘要 基于随机图将生物繁衍过程描述为随机图过程-随机分枝树,建立了依赖年龄的生灭分枝树模型,并研究了分枝树的若干拓扑性质.首先,给出任意节点的首生年龄和末生年龄的分布及生产年龄的顺序统计量分布.然后,得到以年龄t的节点为根节点的连通分支的平均规模. A model of age-dependent birth-death branching tree is developed based on random graph. In this model, biological reproduction processes are described as random graph processes, i.e., a random branching tree. Topological properties of the random branching tree, namely distributions of first-born and last-born age, and the distribution of order statistics of productive ages, are explored. The average size of the connected components in the branching tree is discussed.
作者 傅云斌 唐堰
出处 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第2期160-164,220,共6页 Journal of Shanghai University:Natural Science Edition
基金 国家自然科学基金资助项目(60872060) 上海市自然科学基金资助项目(12ZR1421000) 上海市教委创新基金资助项目(12ZZ193)
关键词 随机图 分枝过程 生灭分枝树 度分布 连通分支 random graph branching process birth-death branching tree degree distribution connectedcomponents
作者简介 通信作者:傅云斌(1978-),男,博士研究生,研究方向为复杂系统与随机图.E-mail:fuyunbin@lixin.edu.cn
  • 相关文献

参考文献6

二级参考文献21

  • 1LI YingQiu,LIU QuanSheng.Age-dependent branching processes in random environments[J].Science China Mathematics,2008,51(10):1807-1830. 被引量:12
  • 2Albeverio S, Bogachev L V, Molchanov S A, et al. Annealed moment Lyapunov exponents for a branching random walk in a homogeneous random branching environment. Markov Process Relat Fields, 2000, 6(4):472-516.
  • 3Baillon J B, Clement P, Greven A, et al. A variational approach to branching random walk in random environment. Ann Probab, 1993, 21(1): 290-317.
  • 4den Hollander F, Menshikov M V, Popov S Yu. A note on transience versus recurrence for branching random walk in random environment. J Statist Phys, 1999, 95(3/4): 587-614.
  • 5Fleischmann K, Greven A. Localization and selection in a mean field branching random walk in random environment. Ann Probab, 1992, 20(4): 2141-2163.
  • 6Greven A, den Hollander F. Branching random walk in random environment: phase transition for local and global growth rates. Probab Theory Relat Fields, 1992, 91(2): 195-249.
  • 7Revesz P. Supercritical branching random walk in d-dimensional random environment. In: Applied Statistical Science, Vol Ⅲ, Commack, NY: Nova Sci Publ. 41-51.
  • 8Devulder A. A branching system of random walks in random environment, preprint, Univ Paris 6, 2003.
  • 9Comets F, Menshikov M V, Popov S Yu. One-dimensional branching random walk in random environment:a classification. Markov Process Relat Fields, 1998, 4(4): 465-477.
  • 10Machado F P, Popov S Yu. One-dimensional branching random walk in a Markovian random environment.J Appl Probab, 2000, 37(4): 1157-1163.

共引文献29

同被引文献5

  • 1HARRIS T E. The theory of branching processes [M]. Berlin: Springer-Verlag, 1963.
  • 2WANG H X. Extinction of P-S-D branching processes in random environments [J]. Appl Prob, 1999, 36(1): 146-154.
  • 3WANG H X, FANG D F. Asymptotic behaviour for P-S-D branching processes in Markovian random environments [J]. Appl Prob, 1999, 36(2): 611-619.
  • 4WANG Hanxing 1 and DAI Yonglong 2 1. Department of Mathematics, Shanghai University, Shanghai 201800, China,2. Department of Mathematics, Zhongshan University, Guangzhou 510275, China.Population-size-dependent branching processes in Markovian random environments[J].Chinese Science Bulletin,1998,43(8):635-638. 被引量:5
  • 5王汉兴,傅云斌,颜云志,卢桂林,胡细,于娜.出生率与年龄段有关的生灭分枝树[J].中国科学:数学,2013,43(4):383-398. 被引量:2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部