期刊文献+

(1+1)维非局域非线性介质的边界对表面孤子的影响 被引量:2

Impact of boundary on the surface soliton in (1+1)-dimensional nonlocal nonlinear media
原文传递
导出
摘要 对非局域非线性介质中,(1+1)维表面亮孤子进行了研究,主要考虑了边界对孤子的影响.首先,在归一化系统中,对于给定的边界条件,求出了表面孤子的解析解,得到了表面孤子的临界功率和平衡位置.其次,在数值模拟中,发现当样品宽度太小时,受到边界影响而很难形成表面孤子,只有当样品宽度足够大时,边界对孤子的影响可以忽略,从而形成稳定传输的孤子,并与解析的结果相似.此外,还考虑了在光束偏离平衡位置入射的情况下,边界对孤子的影响,发现此时光束在边界附近做周期性震荡,相当于体介质中双光束相互作用的结果,两者运动轨迹与震荡周期完全符合. In this paper, the impacts of boundary on the surface bright soliton in (1+1)-dimensional nonlocal nonlinear media are investigated First the solution of the surface soliton under the given boundary conditions in a normalized system is derived, and then, the critical power and the balance position of the surface soliton are obtained. Next, in the numerical simulation, due to the impact of boundary, it is difficult to form stable solitons when the width of the sample is too small. And the impact of the boundary on the soliton can be ignored only if the width of the sample is large enough; then the stable soliton can exist, which is similar to the analytical results. In addition, the impact of the boundary on the surface soliton when beams do not input from its equilibrium position is also investigated. In this case, the beam will propagate oscillating periodically about the stationary position, which is equivalent to the interaction of two out-of-phase solitons in nonlocal bulk media. Both the oscillating trajectory and period dovetail coinsde nicely with each other.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2013年第9期224-231,共8页 Acta Physica Sinica
基金 国家自然科学基金(批准号:10804033 11174090)资助的课题~~
关键词 非局域非线性 边界 样品宽度 周期震荡 nonlocal nonlinear boundary width of the sample oscillating periodically
作者简介 通讯作者.E-mail:huwei@scnu.edu.cn
  • 相关文献

参考文献30

  • 1Guo Q Luo B Yi F H, Chi S, Xie Y Q 2004 Phys. Rev. E 69 016602.
  • 2郑亚建, 宣文涛, 陆大全, 欧阳世根, 胡巍, 郭旗 2010 物理学报 59 1075.
  • 3江群, 寿倩, 郑亚健, 梁炎斌, 胡巍, 郭旗 2010 物理学报 59 0329.
  • 4梁炎斌, 郑亚建, 杨平保, 曹龙贵, 陆大全, 胡巍, 郭旗 2008 物理学报 57 5690.
  • 5陈利霞, 陆大全, 胡巍, 杨振军, 曹伟文, 郑睿, 郭旗 2010 物理学报 59 327.
  • 6杨振军, 李少华, 陆大全, 胡巍 2010 物理学报 59 4707.
  • 7Yang Z J, Lu D Q, Hu W, Zheng Y Z, Gao X H 2010 Chin. Phys. B 19 124212.
  • 8Rotschild C, Segev M, Xu Z, Kartashov Y V, TornerL Cohen 2006 Opt. Lett. 31 3312.
  • 9Rotschild C, Cohen O, Manela O, Segev M 005 Phys. Rev. Lett. 95 213904.
  • 10Conti C, Peccianti M, Assanto G 2004 Phys. Rev. Lett. 92 113902.

同被引文献38

  • 1Quhe R G, Zheng J X, Luo G F, Liu Q H, Qin R, Zhou J, Yu D P, Nagase S, Mei W N, Gao Z X, Lu J 2012 NPG Asia Materials 4 e6.
  • 2Wu H Q, Linghu C Y, Lü H M, Qian H 2013 Chin. Phys. B 22 098106.
  • 3Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197.
  • 4Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666.
  • 5Yuan W J, Liu A R, Huang L, Li C, Shi G Q 2013 Advanced Materials 25 766.
  • 6Guinea F, Katsnelson M I, Geim A K 2010 Nature Physics 6 30.
  • 7Li Z Q, Henriksen E A, Jiang Z, Hao Z, Martin M C, Kim P, Stormer H L, Basov D N 2008 Nature Physics 4 532.
  • 8Hendry E, Hale P J, Moger J, Savchenko A K, Mikhailov S A 2010 Phys. Rev. Lett. 105 097401.
  • 9Lu J J, Feng M, Zhan H B 2013 Acta Phys. Sin. 62 014204 (in Chinese).
  • 10Zuo Z G, Wang P, Ling F R, Liu J S, Yao J Q 2013 Chin. Phys. B 22 097304.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部