期刊文献+

KPCA和NS-LDA相结合的人脸识别研究 被引量:1

Research on Face Recognition Combined KPCA and NS-LDA
在线阅读 下载PDF
导出
摘要 为了能够通过保留类内散布矩阵零空间的有效鉴别信息,并选择恰当的投影找到最大可能地区别类内类间的数据集,文章分别选用核主成分分析(KPCA)和零空间线性鉴别分析(null space LDA),其中核主成分分析(KPCA)是主成分分析(PCA)在核空间中的非线性推广,零空间线性鉴别分析利用了零空间的有效信息。文中将KPCA和NS-LDA的特征提取方法结合并应用于人脸识别研究,其综合了KPCA利用数据高阶性和经NS-LDA投影矩阵良好可分性的优点来增强人脸识别性能。实验结果证明,该方法能够有效地提高人脸识别率。 In order to retain the effective identification information of scattering matrix zero space inside the class, select the appropriate projection to maximize finding the data set inside and between classes, respectively choose Kernel Principal Component Analysis ( KP- CA) and Null Space Linear Discrimination Analysis (NS-LDA) ,the KPCA is the nonlinear promotion of PCA in the kernel space,NS -LDA takes advantage of zero space information effectively. The feature extraction method of the Kt^A and NS-LDA is combined and applied to face recognition research,it combines the advantage of KPCA using data and NS-LDA good separability of projection matrix to enhance face recognition performance. The experimental results show that the method can effectively improve the face recognition rate.
出处 《计算机技术与发展》 2013年第5期100-103,共4页 Computer Technology and Development
基金 山东省自然科学基金(ZR2010FL006)
关键词 核主成分分析 零空间线性鉴别分析 人脸识别 余弦角距离 KPCA NS-LDA face recognition cosine angle distance
作者简介 董吉文(1964-),男,山东莱州人,教授,主要研究方向为图像处理、数据库; 赵磊(1988-),男,山东威海人,硕士研究生,主要研究方向为图像处理、模式识别。
  • 相关文献

参考文献15

  • 1Turk M,Pentland A. Eigenfaces for Recognition[ J]. Cognitive Neuro Science, 1991,3 ( 1 ) :71-86.
  • 2Belhumeur P N, Hespanha J P, Kriengman D J. Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projec- tion[ J]. IEEE Trans. on Pattern Analysis and Machine Intel- ligence,1997,19(7) :711-720.
  • 3Yang M H. Kernel eigenfaces vs kernel fisherfaces:face recog- nition using kernel methods[ C ]//Proc of 5th IEEE Int Conf on Automatic Face and Gesture Recognition. Washington DC : [ s. n. ] ,2002:215-220.
  • 4Chen Xin, Flynn P J, Bowyer K W. PCA-based Face Recogni- tion in Infrared Imagery: Baseline and Comparative Studies [C]//Proc of the IEEE International Workshop on Analysisand Modeling of Faces and Gestures. Nice, France : [ s. n. ], 2003 : 127-134.
  • 5Panda R, Naik M K. EBFS-Fisher:An Efficient Algorithm for LDA-based Face Recognition[ C]//Proe of World Congress on Nature & Biologically Inspired Computing. Shantou, China: [s. n. ] ,2009:1041-1046.
  • 6Jin Jianming, Han Xionghu, Wang Qingren. Mathematical For- mulas Extraction [ C ]//Proceedings of the 7th ICDAR. Eding- burgh : [ s. n. ] ,2003 : 1138-1141.
  • 7Jain A K, Duin R P W, Mao J C. Statistical pattern recogni- tion:a review[ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence ,2000,22( 1 ) :4-37.
  • 8Mtiller K R, Mika S, Ratsch G, et al. An Introduction to Kernel -based Learning Algorithms [ J ]. IEEE Trans. on Neural Net- works ,2001,12(2) : 181-201.
  • 9杜卓明,屠宏,耿国华.KPCA方法过程研究与应用[J].计算机工程与应用,2010,46(7):8-10. 被引量:27
  • 10Yang Jian. KPCA Plus LDA:A Complete Kernel Fisher Dis- criminant Framework for Feature Extraction and Recognition [ J]. IEEE Transactions on Pattern Analysis and Machine In- telligence,2005,27 ( 2 ) : 230 -244.

二级参考文献56

  • 1何国辉,甘俊英.核函数FISHER鉴别在性别鉴别中的应用[J].计算机工程与应用,2004,40(15):209-210. 被引量:5
  • 2李武军,王崇骏,张炜,陈世福.人脸识别研究综述[J].模式识别与人工智能,2006,19(1):58-66. 被引量:108
  • 3Vapnik V N.Statistical learning theory[M].New York:Addison Wiley, 1998.
  • 4Bandat G,Anouar F.Generalized discrim inant analysis using a kernel function[J].Neural Computing,2000,12(10) :2385-2404.
  • 5LayDC.线性代数及其应用[M].刘深泉,等译.北京:机械工业出版社,2005.
  • 6Kim K I, Jung K, Kim H J. Faoe recognition using kernel principal component analysis[J]. IEEE Signal Processing Letters,2002,9(2) :40 - 42.
  • 7Yang Jian,Frangi Alejandro F, Yang Jing-yu, et al. KPCA plus LDA: A complete kernel Fisher discriminated framework for feature extraction and recognition [ J ]. IEEE Transactiom on Pattern Analysis Machine Intelligence,2005,27(2) :230-244.
  • 8Shen Lin Lin, Li Bai. A review on Gabor wavelets for face recognition [ J ]. Pattern Analysis and Applications, 2006, 9 (2) :273- 292.
  • 9Jain A K,Duin R P W,J C Mao.Statistical pattern recognition: a review[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22 ( 1 ) :4-37.
  • 10Jolliffe I T.Principal component analysis[M].New York: Springer- Verlag, 1986.

共引文献67

同被引文献12

  • 1罗四维,赵连伟.基于谱图理论的流形学习算法[J].计算机研究与发展,2006,43(7):1173-1179. 被引量:76
  • 2Park S C,Park M K,Kang M G.Super-resolution image reconstruction:a technical overview[J].IEEE Signal Processing Magazine,2003,20(3):21-36.
  • 3Yang Min Chun,Wang Yu Chiang Frank.A self-learning approach to single image superresolution[J].IEEE Transactions on Multimedia,2013,15(3):498-508.
  • 4Simon B,Takeo K.Limits on super-resolution and how to break them[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2000,9(2):372-379.
  • 5Freeman W T,Jones T R,Carmichael O T.Learning low-level vision[J].International Journal of Computer Vision,2000,40(1):25-47.
  • 6Freeman W T,Jones T R,Pasztor E C.Examplebased super-resolution[J].IEEE Computer Graphics and Applications,2002,22(2):56-65.
  • 7Su K,Qi T,Qing X,et al.Neighborhood issue in single frame image super-resolution[C]∥IEEE conference on Multimedia and Expo.Amsterdam:IEEE.2005,6(5):109-112.
  • 8Chan Tak Ming,Zhang Junping,Pu Jian.et a1.Neighbor embedding based super-resolution algorithm through edge detection and feature se1ection[J].Pattern Recognition Letters,2009,30(5):494-502.
  • 9Chang Hong,Yeung Dit Yan,Xiong Yimin.Superresolution through neighbor embedding[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition.USA Washington DC,2004,10(1):275-282.
  • 10Roweis S T,Saul L K.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290(5500):2323-2326.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部