摘要
对多Agent系统的Q值强化学习算法进行研究,将历史信息因素的影响添加到Q值学习中,提出了一个新的基于多Agent系统的Q值学习算法.该算法在保证多Agent系统利益达到相对最大化的同时,也有效降低了Agent之间的冲突率.最后,通过仿真测试验证了该算法的有效性.
This paper investigated reinforcement learning in multi-Agent systems. By adding the historical information in learning process and updating the Q learning function, a new algorithm in multi-agents environment was proposed. This algorithm guaranteed the maximization of interests and reduced the conflict rate among multiple Agents. Finally, the effectiveness of the algorithm was verified by the simulation.
出处
《河南师范大学学报(自然科学版)》
CAS
北大核心
2013年第2期158-160,共3页
Journal of Henan Normal University(Natural Science Edition)
基金
国家自然科学基金(61073065)
河南省社科联
省经联团调研课题(SKL-2012-2608)
关键词
多AGENT
强化学习
Q值学习
multi-Agent systems
reinforcement learning
Q-learning
作者简介
尚艳玲(1978-),女,河南安阳人,安阳师范学院讲师,主要从事分布式网络,多智能体研究.
通信作者:肖文雅(1980-),女,河南邓州人,新乡医学院实验师,主要从事现代教育技术研究