期刊文献+

改进的小波阈值函数滤波分析 被引量:2

Filtering Analysis Based on Improved Wavelet Threshold Function
在线阅读 下载PDF
导出
摘要 小波分析作为一种优秀的时频分析方法,越来越多地应用于信号、图形处理以及故障诊断等领域。在噪声处理领域,基于小波变换的阈值函数较多,但效果不一。基于二进小波变换,在Sigmoid函数基础上,建立介于软硬阈值函数之间新的阈值函数,即通过改变新阈值函数中不同的参数,能够不同程度地逼近软硬阈值函数。从应用不同阈值函数对六种噪声信号滤波效果分析可知,采用改进的阈值函数能够使滤波后的信号在提高信噪比的同时,更接近于真实信号。 Wavelet analysis, as one of the advanced time-frequency analysis methods, has been widely used in signal and figure processing, damage detection and so on. Many threshold functions have been proposed based on wavelet transformation in noise processing, but their filtering efficiencies are quite different. In this paper, based on binary wavelet transformation and Sigmoid function, a new threshold function between soft and hard threshold functions was built. By adjusting different parameters of this function, the soft or hard threshold functions could asymptotically approached. According to the results of filtering of six different signals using different thresholds, it can be concluded that the new threshold function can raise the signal-to-noise ratio, and make the filtered signal closer to the true signal.
作者 赵晓燕
出处 《噪声与振动控制》 CSCD 2013年第2期117-122,127,共7页 Noise and Vibration Control
关键词 振动与波 小波分析 滤波 阈值函数 SIGMOID函数 vibration and wave wavelet analysis filtering threshold function Sigmoid function
作者简介 赵晓燕(1980-),女,山东德州人,工学博士,目前从事结构健康监测及检测研究。E—mail:zhaoxiaoyan2002@yahoo.com.cn
  • 相关文献

参考文献7

二级参考文献18

  • 1李军,俞建定,徐铁峰.基于小波变换的故障诊断信号非平稳性分析[J].系统工程与电子技术,2006,28(7):1109-1111. 被引量:18
  • 2周福昌,陈进,何俊,毕果,张桂才,李富才.基于小波滤波与循环平稳度分析的滚动轴承早期故障诊断方法[J].振动与冲击,2006,25(4):91-93. 被引量:17
  • 3滕海文,江见鲸,霍达.基于小波变换的结构损伤诊断研究[J].武汉理工大学学报,2006,28(10):58-60. 被引量:12
  • 4Ingrid Daubechies 著,李建平,杨万年译.小波十讲[M].北京:国防工业出版社,2004.
  • 5Mallat S, Zhong S. Complete Signal Representation from Multiscale Edges [ J ]. IEEE Trans on Pattern Anal Machine Intell, 1992,14(7 ) :710-732.
  • 6Donoho D L. De-noising by Soft-thresholding[J]. IEEE Trans on Information Theory, 1995, 41 (3) :613-627.
  • 7Mallat S, Hwang W L. Singularity Detection and Processing with Wavelets [ J ]. IEEE Trans on Information Theory,1992, 38(2) :617-643.
  • 8Santoso S, Powers E J, Grady W M. Power Quality Disturbance Data Compression Using Wavelet Transform Methods[J]. IEEE Trans on Power Delivery, 1997, 12(3):1250-1257.
  • 9Berman S M. Sojournes and Extremes of Stochastic Processes[J]. Wadsworth, Reading, MA, 1989.
  • 10Angrisani L, Daponte P, D'Apuzzo M, et al. A Measurement Method Based on the Wavelet Transform for Power Quality Analysis [ J ]. IEEE Trans on Power Delivery,1998,13(4) :990-998.

共引文献87

同被引文献19

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部