期刊文献+

基于BP神经网络的小麦碰撞声信号分类 被引量:7

Wheat kernels impact acoustic signal classification based on BP neural network
在线阅读 下载PDF
导出
摘要 小麦在储藏阶段由于各种灾害导致损失巨大,并降低了面粉质量,及时检测并分离小麦的受损颗粒迫在眉睫。文章以提取4类小麦碰撞声信号为基础,使用数字信号处理方法对小麦完好粒、虫害粒、霉变粒及发芽粒的碰撞声信号提取有效特征,最后利用BP神经网络进行分类,对于3类小麦类型的识别取得了较好的识别率。应用结果表明BP神经网络能够较好地实现区分受损小麦颗粒与完好小麦颗粒。 In storage stage, a huge number of wheat will loss due to various disasters and the damaged wheat kernels reduce the quality of the flour, it is important to detect and separate the damaged wheat kernels timely. This paper use digital signal processing method to analyze the impact acoustic signal of un-damaged kernels, IDK(Insect Damaged Kernels), slab-damaged kernels and sprout kernels, extract some characteristic features of the four types wheat kernels, and classify the wheat kernels with BP neural network, get a good recognition result of three types wheat kernels in the end. The research shows that the BP neural network is useful to the detection and separation of damaged wheat kernels and un-damaged wheat kernels.
作者 张丽娜
出处 《电子设计工程》 2013年第7期163-164,168,共3页 Electronic Design Engineering
基金 宝鸡文理学院校级重点项目(ZK12109)
关键词 检测方法 碰撞声信号 BP神经网络 detection method impact acoustic signal BP neural network
作者简介 张丽娜(1983-),女,陕西宝鸡人,硕士,助教。研究方向:数字信号处理和模式识别。
  • 相关文献

参考文献5

  • 1周建平,陶春辉,吕文正,何拥华,顾春华.基于BP网络对模拟声呐信号分类[J].海洋学研究,2007,25(2):83-90. 被引量:3
  • 2贾春花.基于HHT的果蝇振翅鸣声特征提取及分类研究[D].西安:陕西师范大学.2011.
  • 3边肇祺,张学工.模式识别[M].2版.北京:清华大学出版社,1999.
  • 4Rosenblatt F. The perceptron:A probalistic model for information storage and organization in the brain [J]. Psychological Review, 1958(65):386-408.
  • 5张丽娜.小麦碰撞声信号特征识别研究[D].西安:陕西师范大学.2012.

二级参考文献17

共引文献20

同被引文献55

  • 1刘宁,裴雷.彩色激光打印机、复印机同一认定新方法[J].江苏警官学院学报,2005,20(2):165-170. 被引量:20
  • 2孙炯宁,傅德胜,徐永华.基于熵和能量的语音端点检测算法[J].计算机工程与设计,2005,26(12):3429-3431. 被引量:4
  • 3Pearson T C, Cetin A E, Tewfik A H, et al. An overview of sig- nal processing for food inspection [J]. IEEE Signal Processing Magazine, 2007(5) : 106-108.
  • 4Pearson T C. Detection of pistachio nuts with closed shells using impact acoustics [J]. Applied Engineering in Agriculture, 2001, 17(2) :249-253.
  • 5Cetin A E, Pearson T C, Tewfik A H. Classification of closed and open-shell pistachio nuts using voice-recognition technology [J]. Transaction of ASAE, 2004,47(2) : 659-664.
  • 6Onaran I, Pearson T C, Yardimci Y, et al. Detection of underde- veloped hazelnuts from fully developed nuts by impact acoustics [J]. Information & Electrical Technologies Division of ASABE, 2006, 49(6): 1 971-1 976.
  • 7Khalifa S , Komarizadeh M H, Tousi B. An intelligent system for grading walnuts based on acoustic emission and neural [J]. Jour- nal of Food Agriculture and Environment, 2011, 9 (1) : 132 1-5.
  • 8Khalesi S , Mahmoudi A, Hosainpour A, et al. Detection of wal nut varieties using impact acoustics and artificial neural networks (ANNs)[J]. Modern Applied Science, 2012, 6(1):43-49.
  • 9Brettell T, Butler J, Almirall J. Forensic science. Analytical Chemis- try 83, 2011 ; 83:4539-4556.
  • 10Delp E, Memon N, Wu M. Digital forensics [ From the Guest Edi- torsl. Signal Processing Magazine, 2009 ; 26 : 14-15.

引证文献7

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部