期刊文献+

基于模糊支持向量机的飞机蒙皮损伤识别方法 被引量:5

Recognition for Aircraft Skin Damage Based on FSVM
在线阅读 下载PDF
导出
摘要 针对目前飞机蒙皮无损检测,目视检测存在人为因素影响严重,其他检测手段检测成本高,检测过程复杂。采用基于飞机蒙皮图像灰度共生矩阵的检测方法,通过机器视觉系统,采集飞机蒙皮图像,建立了正常、裂缝、腐蚀和撞击四种飞机蒙皮图像库;根据飞机蒙皮不同损伤表面纹理不同,提取图像的灰度共生矩阵,提出了基于样本紧密度模糊支持向量机的蒙皮图像损伤识别方法。该方法在欧氏空间考虑损伤样本类别的距离度量特性,通过定义模糊连接度,提高了样本的区分度。实验表明,采用样本紧密度模糊支持向量机识别率要优于支持向量机以及普通模糊支持向量机,蒙皮损伤识别率可以达到93.333%。 In the non destructive testing field of aircraft ,visual inspection is affected seriously by human factors, other detection methods cost high, the detection processes are complicated, or only certain materials could be detected. In view of the current detection and the urgent need of the aircraft skin, a recognition method based on Gray Level Co-ccurrence Matrix (GLCM) is presented. The images (Normal, Crack, Corrosion and Impact)of the aircraft skin were collected by machine vision systems, then the image database of aircraft skin was established, ac- cording to different textures with different damages, the gray-level co-occurrence matrixes of the images were extrac- ted, and the Fuzzy Support Vector Machine (FSVM)based on sample affinity method has been used to classify the damages, which considers the distance measuring characteristics between sample classes in Euclidean space. The samples' separating capacity was improved by defining the fuzzy connectivity. The experiment results show that the presented method is superior to the SVM and FSVM at a 93. 333% recognition rate.
作者 王昊 王从庆
出处 《科学技术与工程》 北大核心 2013年第10期2901-2905,2910,共6页 Science Technology and Engineering
关键词 飞机蒙皮 损伤识别 灰度共生矩阵 模糊支持向量机 样本紧密度 aircraft skinmachine sample affinitydamage identificationgray level co-ccurrence matrix fuzzy support vector
作者简介 王昊(1987-),男,河北沧州人,硕士研究生。研究方向:模式识别与智能控制。E-mail:fighterwans01@163.com。
  • 相关文献

参考文献6

二级参考文献27

  • 1陈果.3D Measurement and Stereo Reconstruction for Aeroengine Interior Damage[J].Chinese Journal of Aeronautics,2004,17(3):149-151. 被引量:5
  • 2UNSANG PARK,FAN YUAN,LALITA UDPA,et al.Automated Rivet Inspection for Aging Aircraft with Magneto-Optic Imager[C]//The 10thInternational Workshop on Electromagnetic Nondestructive Evaluation (ENDE)Michigan. United States, 2004.
  • 3DENG YtMING, LIU XIN, FAN YUAN, et al. Characterization of magneto-optic imaging data for aircraft inspection[J]. IEEE Transactions on Magnetics, 2006,42( 10 ) : 3228-3230.
  • 4FAN YUAN ,DENG YIMING,ZENG ZHIWEI, et .al.Aging Aircraft Rivet Site Inspection Using Magneto-Optic Imaging: Automation and Real-time Image Processing [R]. 9^th Joint FAA/DoD/NASA Conference on Aging Aircraft. Atlanta, GA, 2006.
  • 5UNSANG PARK, LALITA UDPA, GEORGE C STOCKMAN. Motion-based filtering of magneto-optic imagers[J]. Image and Vision Computing, 2004,22(3) : 243-249.
  • 6Yoseph Bar-Cohen.In-Service NDE of Aerospace Structures-Emerging Technologies and Challenges at the End of the 2nd Millennium[J/OL].http://www.ndt.net/article/v04n09/bcohen/bcohen.htm,1999-09-15/2005-09-20.
  • 7Joseph M Buckley,Robert A Smith,Jesse A.Skramstad.Transient eddy currents for aircraft structure inspection-an Introduction[C] //Proceedings of the 42nd Annual British Conference on NDT.Bransford:The NDT 2003 Conference,2003.
  • 8Mel Siegel,Priyan Gunatilake.Remote enhanced visual inspection of aircraft by a mobile robot[C]//1998 IEEE Workshop on Emerging Technologies,Intelligent Measurement and Virtual Systems for Instrumentation and Measurement-ETIMVIS' 98.USA:St.Paul,1998.
  • 9Lemistre M,Decitre J M.Corrosion and cracks detection in metallic structures by magneto optic image processing[C]//Proceedings of International Conference on Quality Control by Artificial Vision.France:Cepadues,2001.
  • 10Lin C F, Wan Sh D. Fuzzy support vector machines [ J]. IEEE Transactions on Neural Networks, 2002,13(2) :464 - 471.

共引文献62

同被引文献32

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部