期刊文献+

Longtime Convergence of Numerical Approximations for Semilinear Parabolic Equations (Ⅰ)

Longtime Convergence of Numerical Approximations for Semilinear Parabolic Equations (Ⅰ)
在线阅读 下载PDF
导出
摘要 The numerical approximations of the dynamical systems governed by semilinear parabolic equations are considered. An abstract framework for long time error estimates is established. When applied to reaction diffusion equation, Navier Stokes equations and Chan Hilliard equation, approximated by Galerkin and nonlinear Galerkin methods in space and by Runge Kutta method in time, our framework yields error estimates uniform in time. The numerical approximations of the dynamical systems governed by semilinear parabolic equations are considered. An abstract framework for long time error estimates is established. When applied to reaction diffusion equation, Navier Stokes equations and Chan Hilliard equation, approximated by Galerkin and nonlinear Galerkin methods in space and by Runge Kutta method in time, our framework yields error estimates uniform in time.
出处 《Northeastern Mathematical Journal》 CSCD 2000年第1期99-126,共28页 东北数学(英文版)
关键词 semilinear parabolic equation Runge Kutta method long time error estimate semilinear parabolic equation Runge Kutta method long time error estimate
  • 相关文献

参考文献21

  • 1[1]Lubich, C. And Ostermann, A., Runge-Kutta Approximation of quasi-linear parabolic equations, Math. Comp., 64(1995), 601-627.
  • 2[2]Heywood, J.G. And Rannacher, R., Finite element approximation of the nonstationary Navier Stokes problem, Part Ⅰ: Regularity of solutions and second-order error estimates for spatial discretization, SIAM J. Numer. Anal., 19(1982), 275-311.
  • 3[3]Heywood, J.G. And Rannaeher, R., Finite element approximation of the nonstationary Navier Stokes problem, Part Ⅲ: Smoothing property and higher order estimates for spatial discretization, SIAM J. Numer. Anal., 25(1988), 489-512.
  • 4[4]Devulder, C. Marion, M. And Titi, E., On the rate of convergence of nonlinear Galerkin methods, Math. Comp., 60(1993), 495-514.
  • 5[5]Johnson, C., Larsson, S., Thomee, V. And Wahlbin, L., Error estimates for spatically discrete approximation of semilinear parabolic equations with nonsmooth date, Math. Comp., 49(1987), 331-357.
  • 6[6]Dekker, K. And Verwer, J.G., Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations. North-Holland, Amsterdam, 1984.
  • 7[7]Larsson, S., The long-time behavior of finite-element approximation of solutions to semilinear parabolic problems, SIAM J, Numer. Anal., 26(1989), 348-365.
  • 8[8]Carr, J. And Pego, R.L., Metastable patterns in solutions of ut=ε2uxx-f(u). Comm. Pure. Appl. Math., 42(1989), 523-576.
  • 9[9]Foias, C. And Temam, R., Structure of the set of stationary solutions of the Navier-Stokes equations., Comm. Pure Appl. Math., 30(1977), 146-164.
  • 10[10]Georgeseu, A., Hydrodynamic Stability Theory, Martinus Nijhoff, Dordrecht, the Netherlands, 1985.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部