期刊文献+

石墨烯微纳结构加工技术的研究进展 被引量:2

Research Progress of the Process Technology for Graphene Micro/Nano Structures
在线阅读 下载PDF
导出
摘要 简单介绍了石墨烯独特的光电子性质,说明实现其在光电子器件中应用的有效方法是进行微纳加工。接下来对主要的石墨烯微纳加工技术——掩膜光刻、转移压印以及激光直写和干涉进行详细阐述,通过实例对每种加工技术的关键步骤和特点进行说明,并分析比较了不同加工技术的优缺点。然后对近期出现的转移压印辅助光刻和飞秒直写辅助转移压印技术的加工流程进行详细介绍,阐述将两种加工技术相结合应用于石墨烯微纳结构加工的优势。最后,简单展望了石墨烯微纳加工未来的发展趋势,指出需进一步研究的问题,对如何更好地实现石墨烯微纳结构的加工提出一些建议。 The unique optoelectronic properties of the graphene are introduced briefly, which il-lustrate that the micro/nano processing is the effective method to realize the graphene applied to the electronic and optoelectronic devices. Then, the main techniques of the graphene micro/nanoprocessing are elaborated, including the mask lithography, transfer printing, laser direct writing and interference. The key steps and characteristics of each process technology are explained byexamples, and the advantages and disadvantages of different techniques are analyzed. The process flows of the transfer printing-assisted lithography and femtosecond laser direct writing-assistedtransfer printing are introduced in detail, the advantages of combining two different techniques applied to the graphene micro/nano structure processing are expounded. Finally, the future development trend of the graphene micro/nano processing is prospected, the problems which have to be further studied are pointed out, and some suggestions on how to obtain the better graphene- based micro/nano structures are presented.
出处 《微纳电子技术》 CAS 北大核心 2013年第4期255-263,共9页 Micronanoelectronic Technology
基金 河南省高校科技创新人才支持计划(2012HASTIT034) 平高电气博士后基金资助项目(PJH/JK17-2011)
关键词 石墨烯 微纳加工 光刻 转移压印 直写 干涉 graphene micro/nano processing lithography transfer printing direct writing in- terference
作者简介 李艳(1985-),女,河南新乡人,硕士.助教.主要研究方向是石墨烯微纳结构加工和飞秒激光加工技术。
  • 相关文献

参考文献37

  • 1NOVOSELOV K S, GELM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306 (5696): 666- 669.
  • 2BERGER C, SONG Z M, LI T B, el al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward gra- phene-based nanoelectronics[J]. J Phys Chem: B, 2004, 108 (52): 19912- 19916.
  • 3RUTTER G M, CRAIN J N, GUISINGER N P, et al. Scat- tering and interference in epitaxial graphene [J]. Science, 2007, 317 (5835): 219-222.
  • 4DATO A, FRENKLACH M, RADMILOVIC V, et al. Sub- strate-free gas-phase synthesis of graphene sheets [J]. Nano Lett, 2008, 8 (7): 2012-2016.
  • 5LOMEDA J R, DOYLE C D, KOSYNKIN D V, et al. Diazo- nium funetionalization of surfactanovrapped chemocalogy con- verted graphene sheets [J]. J Am Chem Soc, 2008, 130 (48): 16201 - 16206.
  • 6GEIM A K, NOVOSELOV K S. The rise of graphene [J]. Nat Mater, 2007, 6 (3): 183-191.
  • 7NOVOSELOV K S, JIANG Z, ZHANG Y, et al. Room-tem- perature quantum hall effect in graphene [J]. Science, 2007, 315 (5817) : 1379.
  • 8WESTERVELT R M. Graphene nanoelectronics [J]. Science, 2008, 320 (5874): 324-325.
  • 9HAN M Y, OEZYILMAZ B, ZHANG Y B, et al. Energy band gap engineering of graphene nanoribbons [J]. Phys Rev Lett, 2007, 98 (20): 206805-1- 206805-4.
  • 10MAK K F, SFEIR M Y, WU Y, et al. Measurement of the optical conductivity of graphene [J]. Phys Rev Lett, 2008, 101 (19) : 196405-1 - 196405-4.

同被引文献19

  • 1NOVOSELOV K S, GEIM A K, FIRSOV A A, et al. Elec- tric field effect in atomically thin carbon films [J]. Science, 21RI4, 306 45696): 666-669.
  • 2GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nat Mater, 2007, 6: 183- 191.
  • 3HAN M, OEZYILMAZ B, ZHANG Y, et al. Energy band gap engineering of graphene nanoribbons [J]. Phys Rev Lett, 2007, 98 (20):206805-1- 206805-4.
  • 4WAKABAYASHI K, TAKANE Y, SIGRIST M. Perfectly con- ducting channel and universality crossover in disordered gra- phene nanoribbons [J]. Phys Rev Lett, 2007, 99 (3):036601-1 - 036601-4.
  • 5BAI J W, ZHONG X, JIANG S, et al. Graphene nanomesh [J]. Nature Nanoteehnology, 2010, 5 (3) : 190- 194.
  • 6LI F W, XUE M Q, MAX L, et al. Facile patterning of reduced graphene oxide film into microelectrode array for highly sensitive sensing [J]. Anal Chem, 2011, 83 (16) : 6426- 6430.
  • 7LIU M, YIN X B, ERICK U A, et al. A graphene-based broadband optical modulator [J]. Nature, 2011, 474 (7349) : 64 - 67.
  • 8PANG S, TSAO H N, FENG X, et al. Patterned graphene electrodes from solution-processed graphite oxide films for or- ganic field-effect transistors [J]. Adv Mater, 2009, 21 (34) : 3488 - 3491.
  • 9SUK J W, KITT A, MAGNUSON C W, et al. Transfer of CVD-grown monolayer graphene onto arbitrary substrates [J]. ACSNano, 2011, 5 (9): 6916-6924.
  • 10LIU Z B, LI L, XU Y F, et al. Direct patterning on reduced graphene oxide nanosheets using femtosecond laser pulses [J]. J Opt, 2011, 13 (8):085601-1 -085601-6.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部