期刊文献+

特高压直流双极分裂输电线路电晕损耗的计算 被引量:2

Calculation of UHVDC bipolar split transmission line corona loss
在线阅读 下载PDF
导出
摘要 为了准确计算特高压直流双极分裂输电线的电晕损耗,针对分裂子导线之间相互影响,子导线表面电场分布不均导致起晕电压的不同以及子导线位置不同引起的电晕损耗的差异,从电晕机理出发,根据气体自持放电条件判断起晕电压,提出了一种计算特高压直流双极分裂输电线的电晕损耗的较准确方法。利用本方法计算±800kV合成电场,验证其有效性。研究表明,子导线表面在其所分布的圆的外侧电晕损耗最严重,内侧较轻甚至不起晕;每一极的损耗主要集中在线路内侧的三个子导线上。最后分析了线路参数对电晕损耗的影响,结果表明,子导线半径和极间距是影响电晕损耗的主要因素,工程设计时应该优先考虑。 In order to accurately calculate corona loss from the bare bundled conductors of HVDC transmission lines,considering the uneven distribution of sub-surface electric field caused by interactions between the sub-conductor,different corona onset voltage and corona loss differences in different positions as sub-conductor,the authors propose a more accurate method of calculating of bipolar corona loss from the bare bundled conductors of HVDC transmission lines by analyzing mechanism under the corona,according to the condition of gas self-sustaining discharge to decide corona onset voltag.The method is applied to the synthetic electric field of ±800 kV to verify its effectiveness.The results show that the corona loss is the most serious outside of sub-surface distribution of wire round and lighter inside even without any corona loss.Each pole's losses are mainly concentrated in three sub-lines inside of the wire.Finally,analysis the affection of ± 800 kV line parameters on corona loss.The results show that sub-conductor radius and pole pitch have obviously impact on the corona loss and they are the main factors.They should be given priority in engineering design.
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第3期90-95,共6页 Journal of Chongqing University
基金 国家自然科学基金资助项目(50907075)
关键词 特高压直流双极 电晕损耗 分裂导线 模拟电荷法 气体放电 HVDC bipolar corona loss bundled conductors charge simulation method gas discharge
作者简介 李永明(1964-),男,重庆大学副教授,博士,主要从事工程电磁场数值计算和电力系统电磁兼容方面的研究,(E-mail)cqliym@equ.edu.cn。
  • 相关文献

参考文献13

  • 1Peek F W. Dieletric phenomena in high voltage engineering[M]. New York: McGraw-Hill, 1929.
  • 2Sarma M P, Janischewskyj W. Analysis of corona losses on DC transmission lines part I1 bipolar lines[J]. IEEE Transactions on Power Apparatus and Systems, 1969, 88(10) :1476-1491.
  • 3Sarma M P, Janischewskyj W. Analysis of corona losses on DC transmission lines: 1-unipolar lines [J]. IEEE Transactions on Power Apparatus and Systems, 1969, 88(5) :718-731.
  • 4Abdel-Salam M, A1-Hamouz Z. A finite-element analysis of bipolar ionized field[J]. IEEE Transactions on Industry Applications, 1995, 31(3):477-483.
  • 5A1-Hamouz Z M. Corona power loss, electric field, and current density profiles in bundled horizontal and vertical bipolar conductors[J]. IEEE Transactions on.Industry Applications, 2002, 38(5):1182-1189.
  • 6A1-Hamouz Z M. A hybrid computational techifique for the estimation o{ corona power loss associated with bundled transmission lines[J]. Electric Power Systems Research, 1999,50(1): 65-70.
  • 7Yu M, Kuffel E, Poltz J. A new algorithm for calculating HVDC corona with the presence of wind [J]. IEEE Transactions on Magnetics, 1992, 28 (5) : 2802-2804.
  • 8Sunaga Y, Sawada Y. Method of calculating ionized field of HVDC transmission lines and analysis of space charge effects on RI[J]. IEEE Transactions on Power Apparatus and Systems, 1980, 99(2): 605-615.
  • 9袁海燕,傅正财.基于有限元法的±800kV特高压直流输电线路离子流场计算[J].电工技术学报,2010,25(2):139-146. 被引量:30
  • 10Yamazaki K, Olsen R G. Application of a corona onset criterion to calculation of corona onset voltage of stranded conductors [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2004, 11 (4) 674-680.

二级参考文献26

  • 1张宇,魏远航,阮江军.高压直流单极离子流场的有限元迭代计算[J].中国电机工程学报,2006,26(23):158-162. 被引量:22
  • 2Abdel-Salam M, Al-Hamouz Z. A finite-element analysis of the bipolar ionized field[J]. IEEE Transactions on Industry Application, 1995, 31(3): 477-483.
  • 3Al-Hamouz Z M, Abdel-Salam M. Improved calculation of finite-element analysis of bipolar corona including ion diffusion[J]. IEEE Transactions on Industry Application, 1998, 34(2): 301-309.
  • 4Al-Hamouz Z M. Adaptive finite-element ballooning analysis of bipolar ionized fields[J]. IEEE Transactions on Industry Application, 1996, 32(6): 1266-1277.
  • 5Taknma T, Kawamoto T. A very stable calculation method for ion flow field of HVDC transmission lines[J]. IEEE Transactions on Power Delivery, 1987, 2(1): 189-198.
  • 6Lu T B, Feng H, Zhao Z B, et al. Analysis of the electric field and ion current density under ultra high-voltage direct-current transmission lines based on finite element method[J]. IEEE Transactions on Magnetics, 2007, 43(4): 1221-1224.
  • 7Al-Hamouz Z M, Abdel-Salam M. Inception voltage of corona in bipolar ionized fields effect on corona power loss[J]. IEEE Transactions on Industry Applications, 1998, 34(1): 57-65.
  • 8Adamiak K. Adaptive approach to finite element modeling of corona fields[J]. IEEE Transactions on Industry Application, 1994, 30(2): 387-393.
  • 9Luo Z, Demerdash N A. A finite-element ballooning model for 2D eddy current open boundary problems for aerospace applications[J]. IEEE Transactions on Magnetics, 1992, 28(5): 2241-2243.
  • 10Abdel-Salam M, Farghally M, Abdel-Sattar S. Finite element solution of monopolar corona equation [J]. IEEE Transactions on Electrical Insulation, 1983, 18(2): 110-119.

共引文献29

同被引文献33

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部