摘要
文章针对一类同时具有3个时变时滞的且不确定参数是有界范数的随机中立型时滞系统,利用随机Lyapunov稳定性理论和It^o微分法则,采用线性矩阵不等式方法,推导出系统的随机渐近稳定的充分条件,并进一步给出随机鲁棒可镇定的充分条件;镇定控制器主要采用状态反馈的方法来设计,从而保证了闭环系统的渐近稳定性;最后给出数值算例验证了文中控制器设计方法的正确性和适用性。
This paper investigates the problem of robust stabilization of a class of uncertain stochastic neutral systems with three time-varying delays,in which the delay is distributed and the parametric uncertainties are norm-bounded.By employing Lyapunov stochastic stability theory and It differential rule,and using the method of linear matrix inequality,the sufficient condition for the stochastic asymptotical stabilization of the system is presented,so is the sufficient condition for stochastic robust stabilization.By designing a state feedback controller,the asymptotical stabilization of closed-loop system is achieved.Finally,the numerical example proves that the proposed method is effective and applicable.
出处
《合肥工业大学学报(自然科学版)》
CAS
CSCD
北大核心
2013年第3期297-302,共6页
Journal of Hefei University of Technology:Natural Science
基金
安徽新华学院自然科学基金资助项目(2012zr008)
关键词
随机中立型系统
分布时滞
渐近稳定性
随机鲁棒镇定
线性矩阵不等式
stochastic neutral system
distributed delay
asymptotical stabilization
stochastic robust stabilization
linear matrix inequality
作者简介
汪慧(1985-),女,安徽寿县人,安徽新华学院助教.