期刊文献+

具有分布时滞的随机中立型系统的随机鲁棒镇定 被引量:1

Stochastic robust stabilization of stochastic neutral systems with distributed delays
在线阅读 下载PDF
导出
摘要 文章针对一类同时具有3个时变时滞的且不确定参数是有界范数的随机中立型时滞系统,利用随机Lyapunov稳定性理论和It^o微分法则,采用线性矩阵不等式方法,推导出系统的随机渐近稳定的充分条件,并进一步给出随机鲁棒可镇定的充分条件;镇定控制器主要采用状态反馈的方法来设计,从而保证了闭环系统的渐近稳定性;最后给出数值算例验证了文中控制器设计方法的正确性和适用性。 This paper investigates the problem of robust stabilization of a class of uncertain stochastic neutral systems with three time-varying delays,in which the delay is distributed and the parametric uncertainties are norm-bounded.By employing Lyapunov stochastic stability theory and It differential rule,and using the method of linear matrix inequality,the sufficient condition for the stochastic asymptotical stabilization of the system is presented,so is the sufficient condition for stochastic robust stabilization.By designing a state feedback controller,the asymptotical stabilization of closed-loop system is achieved.Finally,the numerical example proves that the proposed method is effective and applicable.
作者 汪慧 丁健
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第3期297-302,共6页 Journal of Hefei University of Technology:Natural Science
基金 安徽新华学院自然科学基金资助项目(2012zr008)
关键词 随机中立型系统 分布时滞 渐近稳定性 随机鲁棒镇定 线性矩阵不等式 stochastic neutral system distributed delay asymptotical stabilization stochastic robust stabilization linear matrix inequality
作者简介 汪慧(1985-),女,安徽寿县人,安徽新华学院助教.
  • 相关文献

参考文献9

  • 1Lu C Y, Tsai J H, Su T. Robust stabilization of uncertain stochastic neutral systems with multiple delays [C]//Proceedings of the American Control Conference. Anchorage, America: IEEE American Automatic Control Council, 2002 : 2044-2045.
  • 2Xu S Y,Shi P, Chu Y M,et al. Robust stochastic stabilization and H∞ control of uncertain neutral stochastic time-delay systems [J]. Math Anal Appl, 2006, 314 (1) : 1 - 16.
  • 3Lin Li,Yimgmin Jia, et al. L2-L∞ filter design for neutral stochastic time-delay systems[C]//49th IEEE Conference on Decision and Control. December 15- 17, 2010: 4132-4136.
  • 4Sun W, Chen Y. Global asymptotic stability analysis for neutral stochastic neural networks with time-varying delays [J]. Commun Nonlinear Sci Numer Simul, 2009, 14:1576-1581.
  • 5Qiu Jiqing, He Haikuo, Shi Peng. Robust stochastic stabilization and H∞ control for neutral stochastic systems with distributed delays[J]. Circuits Syst Signal Process, 2011, 30:287-301.
  • 6Gershon E, Shaked U. H∞ output-feedback control of discrete-time systems with state-multiplicative noise[J]. Automatica, 2008, 44(2): 574-579.
  • 7Gao Z, Shi X. Robust stability and controller design for uncertain stochastic DAE systems [J]. Journal of Computational Information Systems, 2008, 5(2) : 895-902.
  • 8王华强,石荣荣,杨滁光,董学平,姚亮.一类时变时滞系统的稳定性判据[J].合肥工业大学学报(自然科学版),2011,34(8):1146-1149. 被引量:3
  • 9Park J H. On the design of observer-based controller of linear neutral delay-differ ential systems[J]. Applied Mathematics and Computation, 2004, 150(1): 195-202.

二级参考文献8

  • 1Boukas E K, Liu Z K. Deterministic and stochastic time-delay systems[M]. Boston: Birkhauser, 2002 : 23-- 37.
  • 2Gu K, Han Q L, Luo A C J, et al. Discretized Lyapunov functional for systems with distributed delay and piecewise constant coefficients[J]. International Journal of Control, 2001,74:737-744.
  • 3Gouaisbaut F, Peaucelle D. Delay-denpendent stability analysis of linear time delay systems [C]//IFACTDS, 06,2006:1--12.
  • 4Shao H Y. New delay-dependent stability criteria for systems with interval delay [J]. Automatica, 2009, 45 (3) : 744--749.
  • 5Sun J, Liu G P, Chen J, et al. Improved delay-range-dependent stability criteria for linear systems with time-varying delays[J]. Automatica, 2010,46 (2) : 466--470.
  • 6Gu K. An integral inequality in the stability problem of time-delay systems [C]//Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, 2000: 2805--2810.
  • 7杨冬梅,于石,全新.一类非线性时滞广义系统的鲁棒H_∞控制[J].东北大学学报(自然科学版),2010,31(1):4-7. 被引量:4
  • 8王晓华,奥顿,吴忠强,曹文文.不确定非线性时滞系统的时滞依赖保性能控制[J].合肥工业大学学报(自然科学版),2010,33(3):387-390. 被引量:2

共引文献2

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部