期刊文献+

刚性驱动水下传感器节点自组织布置 被引量:17

Rigidity Driven Underwater Sensor Self-Organized Deployment
在线阅读 下载PDF
导出
摘要 水下传感器网络可用于海洋资源勘测、污染监测和战术监视等领域,已成为无线传感器网络的研究热点.在开放式动态的水下环境中传感器节点如何自主调整部署位置以达到高的网络覆盖度和连通性,从而保证最优的监测质量是一个关键问题.该文引入刚性理论,定义了节点域的"刚性-覆盖值"作为水下传感器节点所处位置的评价指标,并基于此设计了刚性驱动的节点移动策略,从而构建了完整的节点自组织布置方法.理论分析和仿真实验结果表明该水下传感器节点自组织布置方法可以使网络演化出优良的覆盖度和连通性,并且具有分布式可实现、收敛速度快、鲁棒性强的优点. Underwater sensor networks (UWSNs) can be applied in sea resources reconnais- sance, pollution monitoring and military monitoring, etc. , so it has become a hot field in wireless sensor networks. In open and dynamic underwater environment, it is a key topic for sensors to adjust their positions to achieve good coverage and connectivity, and guarantee the optimal moni- toring quality. In this paper, rigid theory is introduced, and 'rigidity-coverage value of sensor domain' is defined as the evaluation for the positions of underwater sensors. Furthermore, a rigidity driven moving strategy is developed for sensors. Then, a novel underwater sensor self- organization deployment mechanism is established. The theoretical analysis and extensive simula- tions demonstrate that the proposed underwater sensor deployment method can achieve excellent coverage and connectivity, and can be realized in distributed manner with fast convergence and good robustness.
出处 《计算机学报》 EI CSCD 北大核心 2013年第3期494-505,共12页 Chinese Journal of Computers
基金 国家自然科学基金(61100211 61003307) 中国博士后科学基金(20110490084 2012T50569) 美国国家科学基金(CNS-0832089)资助~~
关键词 水下传感器网络 刚性理论 覆盖度 连通性 群智能 水流场 underwater sensor networks rigid theory coverage connectivity swarm intelli-gence water flowing field
作者简介 夏娜,男,1979年生,博士,教授,中国计算机学会(CCF)会员,主要研究领域为水下传感器网络、导航信息处理、计算智能与应用等.E-mail:xiananawo@hfut.edu.cn. 郑语晨,女,1986年生,硕士研究生,主要研究方向为水下传感器网络. 杜华争,女,1986年生,博士研究生,主要研究方向为水下传感器网络、计算智能. 徐朝农,男,1977年生,博士,副教授,主要研究方向为自组织无线网络、嵌入式系统. 郑榕,女,1975年生,博士,副教授,主要研究方向为网络监测和诊断、序列学习和决策理论.
  • 相关文献

参考文献5

二级参考文献168

共引文献220

同被引文献130

  • 1SAYEESH K V, KUMAR K V, PHANI G L. Fault repair algorithm using localization and controlled mobility in WSN[A]. Proc of 2010 IEEE Global Telecommunication Conference (GLOBECOM 2010)[C].Miami, Florida, USA, 2010. 1663-1667.
  • 2LIU Y, HU Y H, PAN Q. Decentralized robust acoustic source localization with wireless sensor networks for heavy-tail distributed observations[A]. Proc of 2010 IEEE Global Telecommunication Conference(GLOBECOM 2010)[C]. Miami, Florida, USA, 2010. 1-5.
  • 3MENG W, XIAO W D, XIE L H. Diffusion based projection method for distributed source localization in wireless sensor networks[A]. Proc of 2011 IEEE International Conference on Computer Communications(INFOCOM 2011)[C]. Shanghai, China, 2011. 537-542.
  • 4WANG Q X, ZHENG R, TIRUMALA A, et al. Lightning: a hard real-time, fast, and lightweight low-end wireless sensor election protocol for acoustic event localization[J]. IEEE Transactions on Mobile Computing, 2008, 7(5): 570-584.
  • 5XIA N, XU L N, NI C C. Optimal QoM in multichannel wireless networks based on MQICA[J]. International Journal of Distributed Sensor Networks, 2013, 2013:1-14.
  • 6KIM W. Support vector learning approaches for object localization in acoustic wireless sensor networks[A]. Proc of 2010 IEEE International Conference on Intelligent Systems[C]. London, UK, 2010. 485-489.
  • 7KIM W. Event-driven Gaussian process for object localization in wireless sensor networks[A]. Proc of 2011 IEEE International Conference on Intelligent Robots and Systems[C]. San Francisco, California,USA, 2011. 2790-2795.
  • 8VAGHEFI R M, GHOLAMI M R. RSS-based sensor localization with unknown transmit power[A]. Proc of 2011 International Conference on Acoustics, Speech and Signal Processing[C]. Prague, Czech Republic,2011. 2480-2483.
  • 9YAN Y S, WANG H Y, SHEN X H. Efficient convex optimization method for underwater passive source localization based on RSS with WSN[A]. Proc of 2012 IEEE International Conference on Signal Processing, Communication and Computing(ICSPCC)[C]. Hong Kong,China, 2012. 171-174.
  • 10ZENG W J, LI X L. High-resolution multiple wideband and nonstationary source localization with unknown number of sources[J]. IEEE Transactions on Signal Processing, 2010, 58(6): 3125-3136.

引证文献17

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部