期刊文献+

基于SVM的高速公路路基病害自动检测算法 被引量:33

Automatic Detection Algorithm for Expressway Subgrade Diseases Based on SVM
原文传递
导出
摘要 针对当前探地雷达(GPR)数据解释主要依赖专家经验存在的解释结果主观性强和数据解释周期长等问题,利用高速公路路基病害将导致其厚度和层界面反射信号的幅度发生改变等客观信息,结合探地雷达杂波抑制、层界面检测和平滑、感兴趣区域(ROI)提取、特征提取和模式识别技术,提出了一种新颖的高速公路路基病害自动检测算法,并利用该算法对江西省昌九高速公路南昌段采集的GPR数据进行了分析。研究结果表明:该算法的检测结果与结合专家经验和钻孔取芯样本构建的Ground Truth数据库的吻合度高达92.7%,且具有自动、快速等优越性,可为指导制定合适的养护策略及合理分配养护资金提供科学依据。 Nowadays the analysis of ground penetrating radar(GPR) data mainly relies on the experts' experience, which may result in a series of problems such as subjective results and relatively long period of data interpretation. To solve these problems, a novel automatic detection algorithm for expressway subgrade diseases was proposed by using the information that subgrade diseases of expressway will lead to some changes of the thickness of pavement and the amplitude of the reflected signals from layer interfaces, and with GPR clutter suppression, level layer interface detection and smoothing, region of interest (ROI) extraction, feature extraction and pattern recognition technology. The GPR data collected from Nanchang section of Jiangxi Changjiu Expressway were analyzed. The results show that the agreement between the results of the algorithm proposed and the data from the Ground Truth database established with experts' experience and borehole coring is about 92.7~. This algorithm, an automatic and fast method, can provide scientific basis for formulating the suitable maintenance strategy and allocating the maintenance funds reasonably.
出处 《中国公路学报》 EI CAS CSCD 北大核心 2013年第2期42-47,共6页 China Journal of Highway and Transport
基金 国家自然科学基金项目(61062009) 江西省科技支撑计划项目(2009BGB02200) 江西省交通运输厅科技项目(2010H0017)
关键词 道路工程 高速公路 支持向量机 路基病害 自动检测 探地雷达 road engineering expressway SVM subgrade disease automatic detection groundpenetrating radar
作者简介 周辉林(1979-),男,江西抚州人,教授,理学博士,E—mail:zhouhuilin@ncu.edu.cn。
  • 相关文献

参考文献12

  • 1沙庆林.高速公路沥青路面早期损坏与对策[J].长沙理工大学学报(自然科学版),2006,3(3):1-6. 被引量:52
  • 2BENEDETTO A, PENSA S. Indirect Diagnosis ofPavement Structural Damages Using Surface GPRReflection Techniques [J]. Journal of Applied Geo-physics,2007 ,62(2):107-123.
  • 3LAHOUAR S, AL-QADI I L. Automatic Detection ofMultiple Pavement Layers from GPR Data [J]. NDT& E International,2008,41(2) .69-81.
  • 4CHAHINE K, BALTAZART V,DEROBERT X,et al. Blind Deconvolution via Independent ComponentAnalysis for Thin-pavement Thickness EstimationUsing GPR [J]. Audio,Transactions of the IRE Pro-fessional Group,2009.30(6) . 1-5.
  • 5BASTARD C L,BALTAZART V,WANG Y,et al.Thin-pavement Thickness Estimation Using GPRwith High-resolution and Superresolution Methods[J]. IEEE Transactions on Geosciences and RemoteSensing,2007,45(8) :2511-2519.
  • 6SPAGNOLINI U. Permittivity Measurements of Mul-tilayered Media with Monostatic Pulse Radar [J].IEEE Transactions on Geosciences and Remote Sens-ing,1997,35(2) :454-463.
  • 7WU R,LI X,LI J. Continuous Pavement Profilingwith Ground-penetrating Radar [J]. IEE Proceedingsof Radar, Sonar and Navigation,2003,149 (4 ) : 183-193.
  • 8GLASBEY C A, JONES R. Fast Computation ofMoving Average and Related Filters in OctagonalWindows [J], Pattern Recognition Letters, 1997,18(6):555-565.
  • 9LAHOUAR S. Development of Data Analysis Algo-rithms for Interpretation of Ground Penetrating RadarData [D]. Blacksburg: Virginia Polytechnic Instituteand State University,2003.
  • 10MADDEN H. Comments on the Savitzky-golay Con-volution Method for Least-squares Fit Smoothing andDifferentiation of Digital Data [J]. Analytical Chemis-try,1978,50(9) :1383-1386.

二级参考文献13

  • 1[1]沙庆林.高速公路沥青路面早期破坏现象及预防[M].北京:人民交通出版社,2002.
  • 2D J Daniels. Surface-penetrating radar [J]. Electronics Communication Engineering Journal, 1996,8 (4) : 165-182.
  • 3B Boashash, P O'Shea. A methodology for detection and classification of some underwater acoustic signals using time-frequency analysis techniques [J]. IEEE Trans Acoustic, Speech, and signal Processing, 1990,38(11) :1829-1841.
  • 4S Haykin,T K Bhattacharya. Modular learning strategy for signal detection in a nonstationary environment[J]. IEEE Trans. Signal Processing, 1997, 45(6) :1619-1637.
  • 5I. M Bruce ,C Morgan. Automated detection of subpixel targets with continuous and discrete wavelet transforms [J]. IEEE Trans Geosci Remote Sensing,2001,39(7) :2217-2226.
  • 6Y Huang, L M Bruce. Analysis of the effects of cover crop residual on hyperspectral reflectance discrimination of soybean and weeds via Haar transform [C].Proc IEEE IGARSS, 2001,3:1276-1278.
  • 7A Martinez, AC Kak. PCA versus LDA [J]. IEEE Trans. Pattern and Machine Intelligence, 2001, 23(2) :228-233.
  • 8Y Sun and J Li. Time-Frequency analysis for plastic landmine detection via forward-looking ground penetrating radar [C]. IEE Proc Radar Sonar Naving,2003,150(4):253-261.
  • 9I Dubieties. Ten lectures on wavelets [M]. SIAM,Philadelphia, PA, 1992.
  • 10F M Ham, I Kostanic. Principles of Neurocomputing for Science and Engineering [M]. McGraw-Hill Companies, Inc. 2001.

共引文献57

同被引文献548

引证文献33

二级引证文献206

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部