期刊文献+

MSTAR图像2D Gabor滤波增强与自适应阈值分割 被引量:7

2D Gabor Filter Enhancing and Adaptive Thresholding for MSTAR Image
在线阅读 下载PDF
导出
摘要 为实现MSTAR图像无监督分割,并提高分割精度和计算效率,提出了一种基于Gabor滤波增强的自适应阈值分割算法。首先利用多尺度、多方向的Gabor滤波器组对待分割图像进行滤波处理,抑制目标、阴影和背景区域内部的斑噪起伏,同时增强区域间的差异性;在此基础上,通过对增强图像统计特性的分析,给出了灰度阈值计算形式,实现了MSTAR图像的自适应分割。实验结果表明,本文算法对不同斑噪强度的MSTAR图像均具有良好的处理效果,在分割精度、计算效率等方面优于传统的OTSU,以及FCM、MRF等分割方法。 Image segmentation is a hot point in the research field of automatic target recognition of SAR image. In order to segment the MSTAR image automatically, a new adaptive method is proposed. Firstly, 2D Gabor filters with various orientations and scales are used to enhance the original image, which can effectually reduce speckle noise in the background, and smooth the interior of the homogeneous regions. Then the analysis of the statistical characteristics of the enhanced image is made, based on which the adaptive thresholding rules is presented for the automatically segmentation of the images. Experiment results with the MSTAR images indicate that the algorithm presented has advantage of segmentation accuracy, calculation efficiency and noise robustness over the traditional methods, such as OTSU, FCM and MRF
出处 《光电工程》 CAS CSCD 北大核心 2013年第3期87-93,共7页 Opto-Electronic Engineering
关键词 GABOR滤波器组 图像增强 MSTAR图像 自适应阈值分割 Gabor filter banks image enhancement MSTAR image adaptive thresholding
作者简介 倪维平(1980-),男(汉族),江苏徐州人。博士研究生,主要研究方向遥感图像处理与自动目标识别等。E-mail:nihao_wpni@163.com
  • 相关文献

参考文献3

二级参考文献28

  • 1陆丽珍.基于多通道Gabor纹理特征的遥感图像检索[J].浙江大学学报(理学版),2004,31(6):708-711. 被引量:4
  • 2Vyas V S, Rege P. Automated texture analysis with Gahor filter [J]. International Journal on Graphics, Vision and Image Processing, 2006, 6(1) :35-41.
  • 3Dunn D, Higgins W E. Optimal Gabor filters for texture segmentation[J]. IEEE Transactions on Image Processing, 1995, 4(7) :947-964.
  • 4Shen L, Bai L. A review on Gabor wavelets for face recognition [J]. Pattern Analysis & Applications, 2006(9) : 273-292.
  • 5Ilonen J, Kamarainen J K, Kalviainen H. Efficient Computation of Gabor Features[R]. Research Report 100, Lappeenranta University of Technology, Department of Information Technology, 2005.
  • 6Kamarainen J K, Kyrki V, Kalviainen H. Invariance properties of Gabor filter based features-overview and applications [J]. IEEE Transactions on Image Processing, 2006, 15(5): 1088-1099.
  • 7Manjunath B, Ma W. Texture feature for browsing and retrieval of image data [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18 (8) : 837-842.
  • 8Franceschetti G and Lanari R.Synthetic Aperture Radar Processing.New York:CRC Press,1999:3-10.
  • 9U laby F T and Kouyate F.Texture information in SAR images[J].IEEE Trans.on Geosc and Remote Sensing,1986,24(2):235-245.
  • 10Caves R and Quegan S.Qualitative comparision of the performance of SAR segmentation algorithms[J].IEEE Trans.on Image Processing,1998,7(11):1534-1546.

共引文献44

同被引文献63

  • 1BRADSKIG,KAEBLERA.学习OpenCV[M].于仕琪,刘瑞琪,译.北京:清华大学出版社,2009.
  • 2Huang D, Swanson E A, Lin C P, et al. Optical Coherence Tomography [J]. Science(S0036-8075), 1991, 2S4(5035): 1178 1181.
  • 3Wolfgang Drexler, James G Fujimoto. Optical Coherence Tomography: Technology and Applications [M]. Springer-Verlag Berlin Heidelberg, 2008.
  • 4Schmitt J M. Array detection for speckle reduction in optical coherence microscopy [J]. Phys Med Bi01(S0013-9155), 1997, 42(7): 1427-1439.
  • 5Xiang S, Zhou L, Schmitt J. Speckle noise reduction for optical coherence tomography [J]. Proc. of SPIE(S0277-786X), 1998, 3196: 79-88.
  • 6Schmitt J M, Xiang S H, Yung K M. Speckle in Optical Coherence Tomography [J]. J. Biomed. Opt(S 1068-9265), 1999, 4(1): 95.
  • 7Marks D L, Ralston T S, Boppart S A. Speckle reduction by I-divergence regularization in optical coherence tomography [J]. J. Opt. Soc.Am.A(S1048-7529), 2005, 22(11): 2366.
  • 8Ozcan A, Bilenca A, Desjardins A E, et al. Speckle reduction in optical coherence tomography images using digital filtering [J]. J. Opt. Soc. Am.A(S1048-7529), 2007, 24(7): 1901-1910.
  • 9Puvanathasan P, Bizheva K. Speckle noise reduction algorithm for optical coherence tomography based on interval type II fuzzy set [J]. Opt. Express(S1094-4087), 2007, 15(24): 15747-15758.
  • 10Adler D C, Ko T H, Fujimoto J G. Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter [J]. Opt. Lett(S0146-9592), 2004, 29(24): 2878-2880.

引证文献7

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部