期刊文献+

复杂背景下棉花病叶害螨图像分割方法 被引量:53

Segmentation method for cotton mite disease image under complex background
在线阅读 下载PDF
导出
摘要 为提高棉花害螨图像分割的效果,根据棉花害螨图像的特点,该文提出一种在复杂背景条件下棉花害螨病斑的图像分割方法。首先利用超绿特征2G-R-B提取出复杂背景下彩色图像中的类病斑(具有相同红色的害螨病斑和茎秆)。然后对类病斑区域与非类病斑区域的灰度图像进行二值化处理。最后利用面积阈值法将类病斑中的害螨病斑分割出来。试验结果表明,该算法能有效的提取出棉花害螨病斑,准确率可达97.83%。该研究可为复杂背景下的害螨图像的分割提供参考。 According to the properties of cotton disease image, we propose a segmentation method under the condition of complex background for improvement on segmentation precision of cotton mite disease image. The proposed algorithm is comprised of three main steps. First, we extract the analogous disease spots (disease spots and stems with red color) from green plants by Excess green feature 2G-R-B, then some different gray-scale images would be obtained. Second, the targets would be extracted from the background by thresholding according to the double-peak feature presented in the gray Histogram of the gray-scale images. After this procedure, we can get the binary image that contained only analogous disease spots. According to the further amplification researches on the binary images of the large quantities of cotton mite disease image samples, we can find that the segmented images are constituted by a large number of independent 8-connected region, and the connected region of stems are larger than cotton mite disease spots’. On the basis of this feature, the image can be grouped into two categories in order to remove the stems from the whole analogous disease spots in the binary image: the one is small connected region composed by cotton disease spots; and the other is large connected region composed by cotton stems. Finally, compare the disease spots’ area with stems’ and then segmented binary images by using area thresholding, By observing the segmentation results in different thresholding values, select a optimal one to eliminate stem regions that larger than the value. On the contrary, the cotton mite disease area that smaller than the value will be remained. The experiment results show that this algorithm is of effective in segmenting cotton disease spot, and the correctness rate of the algorithm can reach 98.1%. At last, In order to test the validity and generality of this proposed method, 30 color images of cotton mite-disease are picked out to segment by the proposed algorithm, a split plot with repeated measures in the error extraction rate was used as the experimental design. From the statistics, we can know that the average error extraction rate of 30 color images of cotton mite-disease is 2.17%, the average correct extraction rate could reach 97.83%. This proposed algorithm combined 2G-R-B、single threshold and area thresholding to segment the disease spots from image with complex background plays well. It can lay a foundation for automatic identification of cotton mite disease.
出处 《农业工程学报》 EI CAS CSCD 北大核心 2013年第5期147-152,共6页 Transactions of the Chinese Society of Agricultural Engineering
基金 河南省教育厅项目(12B210027) 国家农业智能装备工程技术研究中心开放基金项目(KFZN2012W12-012) 郑州轻工业学院校内博士基金项目
关键词 棉花 图像分割 算法 害螨 复杂背景 颜色特征 面积阈值 cotton image segmentation algorithms mite disease complex background color features areathresholding
作者简介 刁智华(1982-),男,河南夏邑县人,博士,讲师,主要从事农业病害识别的研究。郑州郑州轻工业学院电气信息工程学院,450002。Email:diaozhua@163.com 通信作者:宋寅卯(1963-),男,河北人,教授,郑州轻工业学院电气信息工程学院副院长,主要从事图像处理和智能检测与自动化装置方面研究。郑州郑州轻工业学院电气信息工程学院,450002。
  • 相关文献

参考文献25

  • 1Chun-Chleh. Yang, Shiy.O.Prasher, Jacques-Andre. Landry, K.Robert. A vegetation localization algorithm for precision farming[J]. Biosystems engineering, 2002, 81(2): 137- 146.
  • 2George.E.Meyer, Joan.Camargo.Nero, David.D.Jones, Timothy.W.Hindman. Intensified fuzzy clusters for classifying plant, soil, and residue regions of interest from color images[J]. Computers and Electronics in Agriculture, 2004, 42(3): 161-180.
  • 3Woebbecke D M, Meyer G E, K.Von. Bargen, et al. Color indices for weed identification under various soil, residue and lighting conditions[J]. Transactions of the ASAE, 1995, 38(1): 259-269.
  • 4Steward B L, Tian L E. Machine-Vision weed density estimation for real-time, outdoor lighting, conditions[J]. Transactions of the ASAE, 1999, 42(6): 1897- 1909.
  • 5田有文,李天来.基于支持向量机的黄瓜病叶彩色图像分割[J].仪器仪表学报,2007,28(43):461-463.
  • 6袁媛,李淼,梁青,胡秀珍,张伟.基于水平集的作物病叶图像分割方法[J].农业工程学报,2011,27(2):208-212. 被引量:22
  • 7Camargo A, Smith J S. Image pattern classification for the identification of disease causing agents[J]. Computers and Electronics in Agriculture, 2009, 66(2): 121 -125.
  • 8张艳诚,毛罕平,胡波,李明喜.作物病害图像中重叠病斑分离算法[J].农业机械学报,2008,39(2):112-115. 被引量:22
  • 9Tang L, Tian L E, Steward B L, et al. Texture-based weed classification using Gabor wavelets and neural network for real-time selective herbicide applications[J]. ASAE, 1999, Paper No. 993036.
  • 10Guili Xu, Fengling Zhang, Syed Ghafoor Shah. Use of leaf color images to identify nitrogen and potassium deficient tomatoes[J]. Pattern Recognition Letters, 2011, 32(11): 1584- 1590.

二级参考文献98

共引文献210

同被引文献656

引证文献53

二级引证文献417

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部