期刊文献+

一种星形神经网络的混沌同步 被引量:2

Chaotic Synchronization of a Type of Star-Shaped Neural Network
在线阅读 下载PDF
导出
摘要 通过理论研究和数值模拟,利用基于线性系统稳定准则(SC)的混沌同步方法,配置特殊的非线性项作为耦合函数,讨论一类Hindmarsh-Rose(H-R)神经元构成的复杂星形网络的混沌同步问题.提供了确定网络中神经元之间的同步误差发展方程,给出使神经元网络达到混沌同步的耦合强度的参考值和取值范围.在不同耦合强度影响下,观察神经元的同步过程,总结出各个耦合强度因子对该神经网络同步稳定性过程的影响. This paper researched about the chaotic synchronization of star-shaped neural network which is made up of Hindmarsh-Rose(H-R) neuron models through theoretical analysis and numerical simulation,by making use of stability criterion(SC) method,and configuring a special term as coupling function.Also the paper derived error development equations between different neuron models,on this basis.It estimated the coupling strength range in which the neural network can synchronize.By changing the coupling strength,the synchronization processes were observed and at last,we make a conclusion about the influence of chaotic synchronization which is determined by different coupling strength,was made.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2013年第2期220-225,共6页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金青年基金资助项目(11002087) 高等学校博士学科点专项科研基金资助项目(20100073110007)
关键词 混沌同步 H-R神经元 星形网络 基于线性系统稳定准则的混沌同步方法 耦合强度 chaotic synchronization H-R neuron star-shaped network stability criterion method coupling strength
作者简介 张文龙(1988-),男,河北廊坊市人,硕士生,从事非线性力学,混沌力学与控制的研究.E—mail:zwl19880412@126.com. 于洪洁(联系人),女,副教授,E—mail:yuhongjie@situ.edu.cn.
  • 相关文献

参考文献8

二级参考文献79

共引文献54

同被引文献17

  • 1王进,史其信.短时交通流预测模型综述[J].ITS通讯,2005,7(1):10-13. 被引量:13
  • 2Thomas T, Weijermars W, Berkum E V. Predictions of urban volumes in single time series [J]. IEEE Transactions on Intelligent Transportation Systems,2010, 11(1): 71-80.
  • 3Castillo E, Nogal M, Men6ndez J M, etal. Stochas- tic demand dynamic traffic models using generalized beta-Gaussian Bayesian networks[J]. IEEE Transac- tions on Intelligent Transportation Systems, 2012, 13 (2) : 565-581.
  • 4Adeli H. Neural networks in civil engineering: 1989 -2000[J] Computer-Aided Civil and Infrastructure En- gineering, 2001, 16(2) : 126-142.
  • 5Vlahogianni E I, Karlaftis M G, Golias J C. Short- term traffic forecasting: Where we are and where we' re going[J]. Transportation Research Part C.. Emer- ging Technologies, 2014, 43(1): 3-19.
  • 6Tibshirani R. Regression shrinkage and selection via the lasso[J] Journal of the Royal Statistical Society. Series B (Methodological), 1996, 58 ( 1 ) : 267- 288.
  • 7Efron B, Hastie T, Johnstone I, et al. Least angle regression[J]. The Annals of statistics, 2004, 32(2): 407-499.
  • 8Zou H, Hastie T, Tibshirani R. Sparse principal component analysis[J]. Journal of Computational and Graphical Statistics, 2006, 15(2) : 265-286.
  • 9Trendafilov N T, Jolliffe I T. DALASS: Variable se- lection in discriminant analysis via the LASSO [J]. Computational statistics & Data Analysis, 2007, 51(8) .. 3718-3736.
  • 10Kamarianakis Y, Shen W, Wynter L. Real time road traffic forecasting using regime-switching space-time models and adaptive LASSO[J]. Applied Stochastic Models in Business and Industry, 2012, 28(4): 297 315.

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部