期刊文献+

月面自主精确软着陆的景象匹配方法研究 被引量:1

A Scene Matching Method for Automatic and Precise Soft Landing on the Lunar Surface
在线阅读 下载PDF
导出
摘要 为提高月球探测器自主软着陆的落点精度,利用绕月飞行器和着陆探测器下落图像,提出一种基于尺度信息的多模板递阶景象匹配方法.在月面图像尺度空间上快速提取FAST角点,并确定特征点精确尺度、位置和方向.在特征点邻域建立图像块采样模式,通过图像块像素比较形成二进制串特征描述子,利用海明距离(Hammingdistance)进行特征匹配.实验结果表明,目标在尺度缩放、旋转和光照变化等极端条件下,该算法能够实时完成月面着陆目标区域的准确识别和稳定跟踪,实现月球探测器的远距离、高精度自主导引着陆. In order to improve the accuracy of autonomous soft landing on the lunar surface, a multi-model hierarchical scene matching method based on scale theory is proposed, using the images taken by the lunar orbiter and lander as the information sources. The FAST keypoint extracting technique is used in scale space of the lunar surface image, and then the exact scale, location and orientation of the keypoints are decided. A patch pair sampling pattern around the keypointis is introduced to build the binary descriptor with comparisons of patch pairs. Matching two descriptors is a simple computation of their Hamming distance. Experiments indicate that, with its robustness to scale changes, rotation, motion blur and various illumination conditions, the proposed method could well fulfill the real-time landing target recognition and tracking needs of automatic and precise soft landing on the lunar surface.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2013年第2期172-177,共6页 Transactions of Beijing Institute of Technology
基金 国家部委预研项目(51309020402)
关键词 尺度空间 FAST角点 二进制特征 多模板递阶跟踪 scale space FAST corner binary features multi-model hierarchical tracking
作者简介 郑智辉(1986-),男,博士生,E—mail:zhengzhihui009@qq.com 汪渤(1963-),男,教授,博士生导师,E-mail:wangbo@bitedu.cn.
  • 相关文献

参考文献9

  • 1Lowe D G. Disdnctive image features from scale invariant keypoints[J]. International Journal of Computer Vision, 2004,60(2) :91 - 110.
  • 2Dufournaud Y, Schmid C, Horaud R. Matching imageswith different resolutions[C]//Proceedings of the IEEE Computer Society Conference on CVt'R. Hilton Head Island : IEEE Computer Society, 2000 : 6 12 - 618.
  • 3Rosten E, Drummond T. Machine learning for highspeed corner delection[C]// Proceedings of the 9thEuropean Conference on Computer Vision. [ S. 1. ]: ECCV, 2006,3951:430 - 443.
  • 4Elmar M, Gregory D H, Darius B, et al. Adaptive and generic corner detection based oil tile accelerated segment test [ C ] // Proceedings of 1 lth European Conference on Computer Vision. Crete, Greece: IEEE, 2010:183 - 196.
  • 5Taylor S, Drummond T. Multiple target localization at over 100 FPS[C]//f Proceedings of British Machine Vision Conference. London: IEEE, 2009:216-226.
  • 6Michael C, Vincent L, Christoph S, et al. BRIEF: binary robust independentelementary features [C ] // Proceedings of l lth European Conference on Computer Vision. Crete, Greece: IEEE, 2010:778-792.
  • 7周志强,汪渤.尺度不变特征在自寻的电视制导中的应用[J].电光与控制,2009,16(9):6-8. 被引量:8
  • 8Bay H, Tuytelaars T. SURF: speeded up robust features[J].Computer Vision and Image Understanding, 2008,110(3) :346 - 359.
  • 9EthanR, Vincent R, Kurt K, et al. ORB: an efficient alternative to SIFT or SURF[C] //Proceedings of lath International Conference on Computer Vision. Spain: IEEE, 2011:2564 - 2571.

二级参考文献8

  • 1苗常青,汪渤,付梦印,徐学强.电视图像目标实时分割与识别算法[J].北京理工大学学报,2005,25(9):786-790. 被引量:5
  • 2LOWE D G. Distinctive image features from scale-invariant keypoints[ J]. International Journal of Computer Vision, 2004, 60(2):91-110.
  • 3KOENDERINK J J. The structure of images [ J ]. Biological Cybernetics, 1984 (50) : 363-396.
  • 4LINDEBERG T. Scale-space theory:A basic tool for analyzing structures at different scales [ J ]. Journal of Applied Statistics, 1994, 21 (2) :224-270.
  • 5LINDEBERG T. Scale-space theory in computer vision [ M ]. London : Kluwer Academic Publishers, 1994.
  • 6YOUNG I T, Van VLIETL J. Recursive implementation of the Gaussian Filter [ J ]. Signal Processing, 1995 , 44 (2) :139-151.
  • 7LOWE D G. Object recognition from local scale-invariant features[C]//International Conference on Computer Vision. Corfu, Greece: IEEE Computer Society, 1999:1150-115"7.
  • 8赵大政,张庆捷,李刚,李贵明.电视制导系统目标识别算法[J].弹道学报,2008,20(1):95-97. 被引量:4

共引文献7

同被引文献23

  • 1张华.基于空间颜色特征的行人重识别方法[J].华中科技大学学报(自然科学版),2013,41(S2):209-212. 被引量:11
  • 2Farenzena M,Bazzani L,Perina A,et al.Person re-Identification b y symmetry-driven accumulation of local features[A].Proc.of IEEE Conference on Computer Vision and Pattern Recognition[C].2010,0-2367.
  • 3Bazzani L,Cristani M,Perina A,et al.Multiple-shot person re -identification by chromatic and epitomic analyses[J].Pattern Recognition Letters,2012,33(7):898-903.
  • 4Ma L Y,Yang X K,Tao D C.Person re-identification over camera n etworks using multi-task distance metric learning[J].IEEE Transactions on Image Processing,2014,23(8):3656-3670.
  • 5Zheng W S,Gong S,Xiang T.Reidentification by relative distanc e comparison[J].IEEE Transactions on Pattern Analysis and Machine Intelligence ,2013,35(3):653-668.
  • 6Lowe D.Distinctive image features from scale-invariant keypoin ts[J].International Journal of Computer Vision,2004,60 (2):91-110.
  • 7Bay H,Ess A,Tuytelaars T,et al.SURF:Speeded up r obust features[J].Computer Vision and Image Understanding,2008,110(3):346-359.
  • 8Rublee E,Rabaud V,Konolige K,et al.ORB:an effici ent alternative to SIFT or SURF[A].Proc.of IEEE International Conference on Computer Vision[C].2011,4-2571.
  • 9OpenCV--HSV颜色模型及颜色分量范围[EB/OL].http://blog.csdn.n et/wanggsx918/article/details/23272669,2014-04-09.
  • 10Li C R,Duan J D,Zhong F J.Rotation invariant tex ture retrieval considering the scale dependence of gabor wavelet[J].IEEE Transactions on Image Processing,2015,24(8):2344-2354.

引证文献1

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部