期刊文献+

采用SVR模型进行嵌入率估计的隐写分析方法 被引量:3

SVR-based steganalysis method used for estimating embedding rate
在线阅读 下载PDF
导出
摘要 为解决大多数通用隐写分析算法不能检测秘密信息长度的问题,提出了一种改进的能估计秘密信息长度的通用隐写分析方法。从隐写图中提取描述DCT域系数相关性的132维特征,用支持向量回归机学习图像特征和相应嵌入改变率之间的映射关系并建立模型,根据映射模型估计测试隐写图的嵌入改变率。使用典型的嵌入算法:F5、outguess与MB进行测验,仿真结果显示提出的秘密信息长度估计算法是切实可行的。 In order to solve the problem that the majority of general steganalysis methods cannot estimate the secret message length, this paper proposes an improved general quantitative steg-analysis method that can estimate secret message length. 132 dimensional features describing the correlations between DCT coefficients are extracted from stego images. Support vector regression is used to learn the mapping between feature vectors and the relative embedding change rates and construct stegana- lyzer model. Embedding rates are estimated through new feature sets and steganalyzer model. Simulation is performed on stego images embedded with F5, MB and outguess steganographic algorithms. The results of simulation reveal that the proposed quan- titative steganalysis is feasible to estimate the embedding ratio of stego images in practice.
作者 孙子文 李慧
出处 《计算机工程与应用》 CSCD 2013年第5期84-87,共4页 Computer Engineering and Applications
基金 中央高校基本科研业务费专项资金资助(No.JUSRP21131)
关键词 通用隐写分析 支持向量回归 损失函数 核函数 quantitative steganalysis support vector regression loss function kernel function
作者简介 孙子文(1968-),女,博士,副教授,主要研究领域为无线传感器网络技术及应用、信息安全、图像处理与模式识别; 李慧(1986-),女,硕士。E-mail:sunziwen@jiangnan.edu.cn
  • 相关文献

参考文献15

  • 1孙子文,纪志成.基于离散余弦变换域的块相关性和马尔可夫模型的图像隐写分析[J].信息与控制,2009,38(5):602-607. 被引量:4
  • 2Pevny T, Fridrich J.Merging Markov and DCT features for multi-class JPEG steganalysis[C]//Proc SPIE Electronic Imag- ing, Security, Steganography, and Watermarking of Multime- dia Contents IX.San Jose,CA,USA:SPIE,2007:I-13.
  • 3冯帆,王嘉祯,刘会英,王惠萍,郭景涛,张斌.基于PCA和希伯特包络分析的盲隐写分析算法[J].计算机工程与应用,2011,47(4):93-96. 被引量:2
  • 4Fridrich J, Soukal D, Goljan M.Maximum likelihood estima- tion of length of secret message embedded using +K steg- anography in spatial domain[C]//Proc of Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents VII.San Jose, CA: SPIE, 2005 : 328-340.
  • 5Jena S K, Krishna G V V.Blind steganalysis: estimation of hidden message length[J].Intemational Journal of Comput- ers, Communieations& Control, 2007 : 149-158.
  • 6Yu Xiaoyi, Wang Aiming.Detection of quantization data hid- ing[C]//Proc of 2009 International Conference on Multime- dia Information Networking and Security(MINES' 09).Hu- bei: IEEE, 2009 : 45-47.
  • 7Yang Chunfang, Luo Xiangyang, Liu Fenlin.Embedding ratio estimating for each bit plane of Image[C]//LNCS 5806: Proc of Information Hiding.Heidelberg:Springer,2009:59-72.
  • 8Fridrich J, Goljan M, Hogea D, et al.Quantitative steganaly- sis of digital images: estimating the secret message length[J]. ACM Multimedia Systems Journal, Special Issue on Multi- media Security, 2003,9 (3) : 288-302.
  • 9Pevny T, Fridrich J, Ker A D.From blind to quantitative steganalysis[C]//Proc SPIE,Electronic Imaging,Media Foren- sics and Security XI.San Jose, CA : SPIE, 2009 : 1-14.
  • 10Smola A J, Schslkopf B.A tutorial on support vector regres- sion[J].Statistics and Computing,2004,14(3) : 199-222.

二级参考文献17

  • 1平玲娣,刘祖根,史烈,孙康.基于易变特征实现隐藏信息的盲检测[J].浙江大学学报(工学版),2007,41(3):374-379. 被引量:4
  • 2杨淑莹.模式识别与智能计算[M].北京:电子工业出版社,2008.
  • 3Chandramouli R, Kharrazi M, Memon N. Image steganography and steganalysis: Concepts and practice [A]. Lecture Notes in Computer Science (vol. 2939)[M]. Berlin, Germany: Springer, 2004. 35-49.
  • 4Pevny T, Fridrich J. Multi-class blind steganalysis for JPEG images[A]. Proceedings of SPIE (vol. 6072)[C]. USA: SPIE, 2006. 257-269.
  • 5Fridrich J. Feature-based steganalysis for JPEG images and its implications for future design of steganographic schemes[A]. Lecture Notes in Computer Science (vol. 3200)[M]. Berlin, Germany: Springer, 2004. 67-81.
  • 6Liu Z G, Ping L D, Chen J, et al. Steganalysis based on differential statistics[A]. Lecture Notes in Computer Science (vol. 4301)[M]. Berlin, Germany: Springer, 2006. 224-240.
  • 7Shi Y Q, Chen C, Chen W. A Markov process based approach to effective attacking JPEG steganography[A]. Lecture Notes in Computer Science (vol. 4437)[M]. Berlin, Germany: Springer, 2006. 249-264.
  • 8Chen C H, Shi Y Q. JPEG image steganalysis utilizing both intrablock and interblock correlations[A]. Proceedings of the 2008 IEEE International Symposium on Circuits and Systems[C]. Piscataway, NJ, USA: IEEE, 2008. 3029-3032.
  • 9Rocha A, Goldenstein S, Scheirer W, et al. The unseen challenge data sets[A]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops[C]. Piscataway, NJ, USA: IEEE, 2008. 1 -8.
  • 10Fawcett T. ROC Graphs: Notes and Practical Considerations for Data Mining Researchers[R]. Palo Alto, CA, USA: HP Laboratories, 2003.

共引文献4

同被引文献13

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部