期刊文献+

一种基于积分微分方程的泊松噪声去除算法 被引量:7

An Integro-differential Equation Approach to Reconstructing Images Corrupted by Poisson Noise
在线阅读 下载PDF
导出
摘要 该文提出一种新的基于积分微分方程的泊松噪声去除算法。首先讨论了经典的总变差(TV)最小模型,在此基础上提出一种新的变分多尺度分层图像表示方法,然后在逆尺度空间上积分"尺度"图像从而得到了新的积分微分方程。这种新的积分微分方程含有一个单调增加的尺度函数。通过选取适当的尺度函数,该方程可以有效地去除泊松型噪声。数值实验证明了该算法比经典的TV和四阶偏微分方程算法具有更好的去噪效果。 This paper presents a novel integro-differential equation approach for removing Poisson noise. The classical Total Variational (TV) minimization model is discussed, and then the novel hierarchical multiscale variational image representation model is given. To arrive at the novel integro-differential equation, one integrates in inverse scale space a succession of refined 'slices' of the image. The novel integro-differential equation includes a monotone increasing scaling function. According to choose an adaptive scaling function, this equation can remove Poisson noise efficiently. Finally, the experiment results demonstrate the proposed model obtains better effects compare with the classical TV and fourth-order partial differential equation models.
作者 白键 冯象初
出处 《电子与信息学报》 EI CSCD 北大核心 2013年第2期451-456,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61105011) 博士点新教师基金(20100203120010)资助课题
关键词 图像处理 泊松噪声 总变差最小 积分微分方程 Image processing Poisson noise Total Variation (TV) minimization Integro-differential equation
作者简介 通信作者:白键:男,1979年生,讲师,研究方向为偏微分方程图像处理.keywhite26@126.com 冯象初:男,1962年生,教授,研究方向为偏微分方程图像处理
  • 相关文献

参考文献2

二级参考文献17

  • 1BUADES A,COLL B,MOREL J M.A nonLocal algorithm for image denoising[C].Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2005,2:60-65.
  • 2DABOV K,FOI A,KATKOVNIK V,et al.Image denoising by sparse 3D transform-domain collaborative filtering[J].IEEE Transactions on Image Processing,2007,16(8):2080-2095.
  • 3AHARON M,ELAD M,BRUCKSTEIN A M.The K-SVD:an algorithm for designing of overcomplete dictionaries for sparse representation[J].IEEE Transactions on Signal Processing,2006,54(11):4311-4322.
  • 4LEE J S.Speckle suppression and analysis for synthetic aperture radar image[J].Optical Engineering,1986,25(5):636-643.
  • 5KUAN D,SAWCHUK A,STRAND T.Adaptive restoration of image with speckle[J].IEEE Transactions on Acoustics Speech and Signal Processing,1987,35(3):373-383.
  • 6FROST V S,STILES J A,SHANMUGAN K S.A mode for radar image and its application to adaptive digital filtering of multiplicative noise[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1982,4(2):157-165.
  • 7DONOHO D L,JOHNSTONE I M.Ideal spadal adaptation by wavelet shrinkage[J].Biometrika,1994,81(3):425-455.
  • 8DONOHO D L.Denoising by soft-thresholding[J].IEEE Transaction on Information Theory,1995,41(3):613-627.
  • 9SHI J,OSHER S.A nonlinear inverse scale space method for a convex multiplicative noise model[J].SIAM Journal on Imaging Sciences,2008,1(3):294–321.
  • 10AUBERT G,AUJOL J F.A variational approach to removing multiplicative noise[J].SIAM Journal on Applied Mathematics,2008,68(4):925–946.

共引文献14

同被引文献65

  • 1林世毅,苏广川,陈东,韩晓广.基于二步法的边缘细化算法研究[J].仪器仪表学报,2004,25(z1):682-684. 被引量:4
  • 2赵丽明,刘自齐.湘西方块苗文[J].民族语文,1990(1):44-49. 被引量:21
  • 3王贵,管志成.具有全局收敛性的彩色图像去噪模型[J].浙江大学学报(工学版),2005,39(3):392-396. 被引量:2
  • 4Fadili M, Zhang Bo, and Starck Jean-Luc. Wavelets, ridgelets and curvelets for poisson noise removal[J]. IEEE Transactions on Image Processing, 2008, 17(7): 1093-1108.
  • 5Zhou W F and Li Q G. Poisson noise removal scheme based on fourth-order PDE by alternating minimization algorithm[J]. Abstract and Appli Analysis, 2012, (Special Issue): 1-14.
  • 6Aubert G and Aujol J F. A variational approach to removing mnltiplicative noise[J]. SIAM Journal of Applied Mathematics, 2008, 68(4): 925-946.
  • 7Jin Zheng-meng and Yang Xiao-ping. A variational model to remove the multiplicative noise in ultrasound images[J]. Journal of Mathematical Imaging and Vision, 2011, 39(1): 62-74.
  • 8Rudin L I, Osher S, and Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Physica 19, 1992, 60(1-4): 259-268.
  • 9Le T, Chartrand R, and Asaki T J. A variational approach to recontructing images corrupted by Poisson noise[J]. Journal of Mathematical Imaging and Vision, 2007, 27(3): 257-263.
  • 10Kornprobst P, Deriche R., and Aubert G. Image sequence analysis via partial differential equations[J]. Journal of Mathematical Imaging and Vision, 1999, 11(1): 5-26.

引证文献7

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部