摘要
研究了一个线性相邻 2 /n( F)可修系统 .假定每个部件的工作时间和维修时间均为负指数分布 ,且故障部件能够修复如新 ,但系统中的部件是马氏相依的 .利用广义转移概率的定义和关键部件优先维修的规则 ,求得了该系统的状态转移概率 .当 n已知时 。
In this paper,a linear consecutive 2 out of n:F repairable system is studied.It is assumed that the working time and the repair time of any component are both exponentially distributed and any component after repair is as good as new,but the n components in the system have homogeneous Markov dependence.Using the definition of generalized transition probability and a rule with priority to repair the key component,the state transition probability of the system is derived.When n is given,some important reliability indices of the system can be obtained.
出处
《自动化学报》
EI
CSCD
北大核心
2000年第3期317-323,共7页
Acta Automatica Sinica
基金
国家自然科学基金资助项目 !( 1 96 71 0 1 6 )
关键词
马氏相依
线性相邻2/n(F)可修系统
维修有优先权
Consecutive-k-out-of-n:F repairable system,generalized transition probability,key component,Markov dependence,Q matrix.