期刊文献+

概念格递增修正关联规则挖掘方法 被引量:3

Concept Lattice Based Approach for Incremental Association Rules Mining
在线阅读 下载PDF
导出
摘要 研究了一种知识发现与数据挖掘中关联规则的发现方法 .关联规则是数据挖掘的重要方法之一 ,其核心是各大项目集的获取 .针对货篮关联规则挖掘方法 ,提出了一种改进的概念格递增修正方法 .该方法适应于数据库的动态数据递增或递减更新 ,通过记录项目集 (即概念格中的结点 )在数据库中出现的频率值 ,不需要构造完整的格即可求得项目集的支持度值和可信度值 ,以获取大项目集 ,进而求得关联规则 .同时 ,该方法运用 Hasse图解进行可视化操作 。 A novel association rules mining algorithm in knowledge discovery and data mining was present- ed.Association rule is an important database discovery method,whose kernel is the acquisition of large itemsets.According to K.Hu's basketassociation rule mining algorithm,a modified concept lattice based approach for incrementally acquiring large itemsets was introduced.The approach is efficient when the database is dynamically updated( whether insertion or deletion) ,the frequency value of each itemset( each node in the lattice) is recorded;so the corresponding supportand confidence value can be obtained without constructing the complete lattice,which generates the association rules.Hasse diagram is used to visualize the process,and the algorithm's time complexity can be reduced.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2000年第5期684-687,共4页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金资助项目! ( 6983 5 0 10 )
关键词 数据库 数据挖掘 概念格 关联规则 知识发现 databases data mining concept lattice association rules large itemsets
  • 相关文献

参考文献1

  • 1Hu K,PAKDD’99,1999年,109页

同被引文献14

  • 1PASQUIER N,BASTIDE Y,TAOUIL R,LAKHAL L.Efficient mining of association rules using closed itemset lattice[J].Information System,1999,24(1):24-46.
  • 2VALTCHEV P,MISSAOUI R,GODIN R.A framework for incremental generation of frequent closed itemsets[A].In Proc 2002 ACM-SIGMOD Int Conf Management of Data(SIGMOD'00)[C].Dallas,USA,2002(5):1-12.
  • 3GODIN R,MISSAOUI R,AIAUI H.Incremental concept formation algorithms base on Galois(concept)lattices[J].Computational Intelligence,1995,11(2):246-267.
  • 4HAN J,PEI J,YIN Y.Mining frequent patterns without candidate generation[A].In Proc 2000 ACM-SIGMOD Int Conf Management of Data(SIGMOD'00)[C].Dalias,USA,2000.
  • 5JiaweiHan,MichelineKamber.数据挖掘概念与技术[M].范明,孟小峰,译.北京:机械工业出版社,2013:69-70.
  • 6Cai Y, Cercone N, Han J. An attribute- oriented approach for learningclassification rules from relational databases[C] In:Proceedings of Sixth International Conference on Data Engineering, 1990:281-288.
  • 7Godin R, Missaoui R, Alaoui H. Incremental algorithms for updating the galois Lattiees of abinary Relation, Tech. ReP.#155, Dept. of ComP: Science, UQAM, Sep. 1991.
  • 8Nourine L, Raynaud O.A fast algorithm for building lattices[J].Information Processing Letters, 1999, 71(1):199-204.
  • 9Godin R, Mi formation ssaoui R, Alaoui H. Incrementa algorithms based on Galois 1 concept (concept) lattices[J].Computational Intelli genee, 1995, 11(2):246-267.
  • 10Nourine L, Raynaud O.A fast algorithm for building lattices[J].Information Processing Letters, 1999 71 (5) : 199-204.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部