期刊文献+

一个新的基于信誉机制的理性秘密共享方案

A New Rational Secret Sharing Based on Reputation Mechanism
在线阅读 下载PDF
导出
摘要 针对秘密共享中理性参与者的效用函数难以刻画的问题,考虑参与者的信誉值构建了面向秘密共享的信誉机制;通过考虑理性参与者的长远利益和眼前利益,设计了更为合理的效用假设和效用函数,并以此为基础构建了一个新的基于信誉机制的理性秘密共享方案;最后通过博弈分析表明,在理性秘密共享重构阶段,合作是一个严格的占优策略,我们的方案可以有效地促进理性参与者进行合作,产生一个严格的纳什均衡。 In order to solve the problem that the secret sharing rational participants" utility function was difficult to describe, considered the participants'reputation value, a reputation mechanism for secret sharing was presen- ted. Firstly. By considering the long-term interests and immediate interests of rational participants, a more rea- sonable utility assumption and utility function were designed, and then a new rational secret sharing scheme was constructed based on the reputation mechanism. Finally, the game analysis shows that the cooperation is a strict- ly dominant strategy in the rational secret sharing reconstruction phase, and the rational participants can be effec- tive to promote cooperation in the proposed scheme, then a strict Nash equilibrium is produced.
机构地区 贵州大学理学院
出处 《贵州大学学报(自然科学版)》 2012年第6期76-81,共6页 Journal of Guizhou University:Natural Sciences
基金 国家自然科学基金项目(60963023 61262073) 贵州省自然科学基金项目([2009]2013) 贵州大学博士基金项目(2007-040)
关键词 秘密共享 理性 信誉机制 效用函数 secret sharing rational reputation mechanism utility function
作者简介 徐志聘(1986-),男,福建长泰人,硕士研究生,研究方向:密码学理论与工程,Email:xzp860815@126.com.通讯作者:徐志聘,Email:xzp860815@126.com.
  • 相关文献

参考文献1

二级参考文献18

  • 1Blakley G R. Safeguarding cryptographic keys[C]//Proc of the National Computer Conference, American Federation of Information Processing Societies Proceedings. Arlington: IEEE Computer Society, 1979: 313- 317.
  • 2Shamir A. How to share a secret [J]. Communications of the ACM, 1979, 22(11): 612-613.
  • 3Halpern J, Teague V. Rational secret sharing and multipartycomputation: Extended abstract [C]// Proc of 36th Annual ACM Symposium on Theory of Computing (STOC). Chicago: ACM Press, 2004: 623-632.
  • 4Katz J. Bridging game theory and cryptography: Recent results and future directions[C]//Proc of Theory of Cryptogra- phy Conference 2008. New York: Springer-Verlag, 2008, 4948: 251-272.
  • 5Lysyanskaya A, Triandopoulos N. Rationality and adversarial behavior in multiparty computation[C]//Proc of CRYPTO 2006. Heidelberg: Springer-Verlag, 2006, 4117: 180-197.
  • 6Kol G, Naor M. Games for exchanging information[C]// Proc of STOC 2008. New York: ACM Press, 2008: 423-432.
  • 7Kol G, Naor M. Cryptography and game theory: Designing protocols for exchanging information[C//Proc of TCC 2008. Heidelberg: Springer-Verlag, 2008, 4948: 320-339.
  • 8Fuchsbauer G, Katz 1, Naccache D. Efficient Rational Secret Sharing in Standard Communication Networks[C]//Proc of TCC 2010. Zurich: Springer, 2010: 419-436.
  • 9Maleka S, Shareef A, Pandu R C. Rational secret sharing with repeated games[C]// Proc of ISPEC 2008. Sydney: Springer-Verlag, 2008: 334-346.
  • 10Ong S J, Parkes D V, Rosen, et al. Fairness with an honest Minority and a rational majority[C]//Proc of TCC 2009. San Francisco: Springer-Verlag, 2009: 36-53.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部