期刊文献+

基于SIFT的全自动遥感图像配准算法 被引量:8

Automatic remote sensing image registration algorithm based on SIFT
在线阅读 下载PDF
导出
摘要 针对仿射变换的光学图像自动配准精度不高的问题,提出了一种基于特征的由粗到细的遥感图像自动配准算法。首先采用SIFT特征进行了特征点的粗匹配,将输入图像映射为一个具有平移、缩放、旋转不变性的局部特征向量集,采用特征向量的欧氏距离作为相似性判定度量,通过两两比较找出匹配的若干对特征点对作为初始配准点对,以完成输入图像的粗匹配;其次,以互信息作为相似性测度,基于位置控制的搜索策略,确定了更多的特征点的对应关系;然后,利用控制点结合加权最小二乘优化仿射变换的模型参数,完成了图像间的精细配准;最后引入了联合直方图,以其作为配准精度的评价标准来检验配准效果。研究结果表明,该算法对于高光谱遥感图像具有较高的配准精度,速度快、可靠性高。 Aiming at the optical image affine transformation of the automatic registration, a coarse-to-fine remote sensing image automatic registration algorithm was proposed. Firstly, the input images were mapped for a local feature vector sets with translation, scaling and rotation invariant characteristic based on SIFT feature. According to the euclidean distance of the feature vector which is taken as the similarity decision measure, the initial matching feature points and the initial model parameter values of the transformation were determined. Secondly, making the mutual information as similarity measure, more established correspondence feature points were obtained based on the position control of the search strategy. Thirdly, the deeply optimized affine transformation model parameters were obtained by using the control points and the weighted least squares optimization algorithm together. In this way, a more sophisticated image registration was completed, and a root mean square error was used to evaluate the result of the registration. Finally joint histogram was taken as the registration precision evaluation standard to test registration effect. Experimental results demonstrate the effectiveness and accuracy of the proposed method.
作者 余婷 厉小润
出处 《机电工程》 CAS 2013年第1期111-115,共5页 Journal of Mechanical & Electrical Engineering
关键词 遥感图像 尺度不变特征转换 图像配准 位置控制 互信息 由粗到细 remote sensing image scale-invariant feature transform (SIFT) image registration position control mutual information coarse-to-fine
作者简介 余婷(1988-),女,浙江杭州人,主要从事遥感图像配准方面的研究.E-mail:yuting8808@gmail.com 通信联系人:厉小润,男,副教授,硕士生导师.E-mail:lxr@zju.edu。cn
  • 相关文献

参考文献11

  • 1吕金建,文贡坚,李德仁.一种基于虚拟三角形的图像自动配准方法[J].信号处理,2008,24(5):737-741. 被引量:3
  • 2吕金建,文贡坚,李德仁,高峰.一种基于角点特征的图像自动配准方法[J].遥感技术与应用,2007,22(3):438-442. 被引量:7
  • 3吕金健.基于特征的多源遥感图像配准技术研究[D].长沙:国防科技大学电子科学与工程学院,2008.
  • 4王伟,苏志勋.基于移动最小二乘法的医学图像配准[J].计算机科学,2010,37(9):270-271. 被引量:8
  • 5程焱,周焰,林洪涛,潘恒辉.基于SIFT特征遥感影像自动配准与拼接[J].遥感技术与应用,2008,23(6):721-728. 被引量:24
  • 6DAVID G. Lowe distinctive image features from scale-in- variant key points [J]. International Journal of Comput- er Vision,2004,60(2) :91-110.
  • 7YU Ting, LI Xiao-run. Remote Sensing Image Registration Based on VTS-PCMIC Algorithm [C]. Fuzzy Systems and Knowledge Discovery (FSKD), 2012 9th International Con- ference, 2012:48-52.
  • 8DARE P, DOWMAN I. An improved model for automatic feature-based registration of SAR and SPOT images[J]. IS- PRS Journal of Photogrammetry & Remote Sensing, 2001,56(1) : 13-28.
  • 9MIKOLAJCAYK K, SHHMID C. Scale&affine invariant in- terest point detectors [J]. International Journal of Com- puter Vision, 2004,60( 1 ) : 63-86.
  • 10LI W, LEUNG H. A maximum likelihood approach for im- age registration using control point and intensity[J]. IEEE Transactions on Image Processing, 2004, 13 (8) : 1115-1127.

二级参考文献52

  • 1李晓明,郑链,胡占义.基于SIFT特征的遥感影像自动配准[J].遥感学报,2006,10(6):885-892. 被引量:155
  • 2Xie Zhi-yong. Image registration using hierarchical B-Splines [ D ]. USA : Arizona state university, 2002.
  • 3Barnea D I, Silverman H F. A class of algorithms for fast digital registration[ J]. IEEE Trans. Computer, ( 21 ) : 179- 186,1972.
  • 4Kugin C D, Hines D C. The phase correlation image alignment method [ C ]. Proceedings of 1975 IEEE International Conference on Cybernetics and Society. New York, USA : IEEE, 163-165,1975.
  • 5L. Fonseca, B. Manjunath. Registration techniques for mul- tisensor remotely sensed imagery [ J ]. Photogrammetry, Engineering, Remote Sensing. 62 (9), 1049-1056,1996.
  • 6P. Dare and I. Dowman. An improved model for automatic feature-based registration of SAR and SPOT images [ J ]. ISPRS Journal of Photogrammetry & Remote Sensing, 56, 13-28,2001.
  • 7H. Li, B. S. Manjunath, and S. K. Mitra. A contour-based approach to multi-sensor image registration [ J ]. IEEE Trans. Image Process, vol. 4, no. 3, pp. 320-334, Mar. 1995.
  • 8Q. Zheng and R. Chellappa. A computational vision approach to image registration [ J ]. IEEE Trans. Image Process, vol. 2, no. 7, pp. 311-326, Jul. 1993.
  • 9L. Brown. A survey of image registration techniques [ J ].ACM Computer Surveys, 24 ( 4 ), 325-376,1992.
  • 10B. Zitova, J. Flusser. Image registration methods: a survey [ J]. Image Vision Computing. 21,977-1000,2003.

共引文献40

同被引文献48

  • 1冯林,严亮,黄德根,贺明峰,滕弘飞.PSO和Powell混合算法在医学图像配准中的应用研究[J].北京生物医学工程,2005,24(1):8-12. 被引量:13
  • 2吕哲.注塑制品视觉检测关键技术研究[D].沈阳:东北大学2008.
  • 3Rita Cucchiara. Detecting Moving Objects,Ghosts,and Shadows in Video Streams[C].IEEE TRANSACTIONS ON PATTERN ANALY- SIS AND MACHINE INTELLIGENCE,2003,25(10):1337-1342.
  • 4Saeid Fazli, Hamed Moradi Pour, Hamed Bouzafi. A Robust Hybrid Movement detection Method in Dynamic Background[C], IEEE, 2009.
  • 5Salma Kammoun Jarraya,Mohamed Hammami and Hanene Ben-Abdallah.Accurate Background ModelingFor Moving Object D-- tection in a Dynamic Scene[C].Digital Image Computing: Techniques and Applications. 2010.
  • 6David G.Distinctive Image F.eatures from Scale-Invariant Keypoints [D]Lowe. Computer Science Department University of British Columbia.2004 Vancouver,B. C., Canada.
  • 7LI J,ALLINSON N M.A comprehensive review of current local features for computer vision[J].Neurocomputing,2008,71(10):1771-1787.
  • 8厉晓飞.基于机器视觉的汽车零件缺陷检测技术研究[D].武汉:武汉理工大学汽车工程学院,2012.
  • 9植赐佳.基于机器视觉的印刷品缺陷自动检测系统[D].广州:广东工业大学自动化学院,2011.
  • 10徐丽艳.基于特征点的遥感图像配准方法及应用研究[D].南京:南京理工大学,2012.

引证文献8

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部